

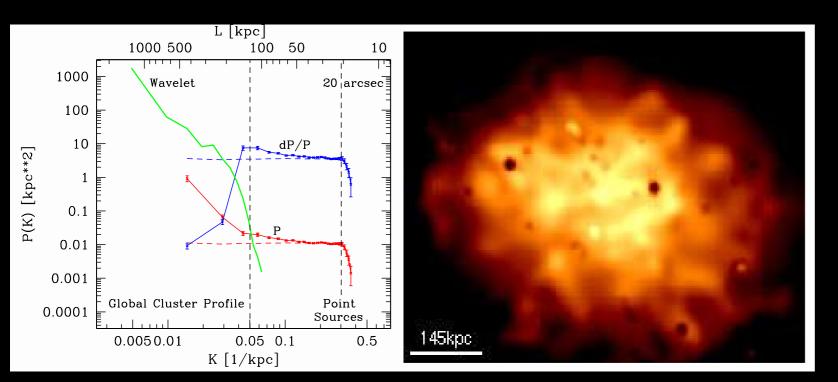
Nov. 12 2014

EFFECTS OF MULTIPLE-SCALE DRIVING ON TURBULENCE STATISTICS

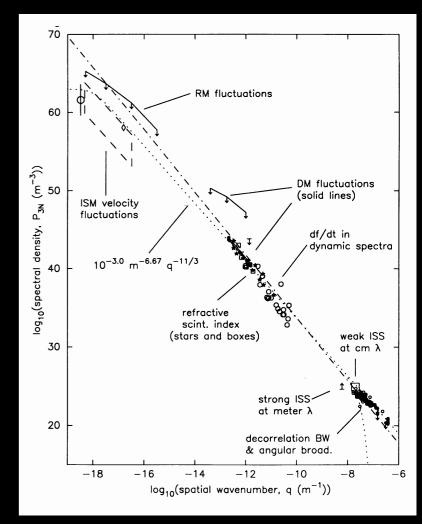
HYUNJU YOO, JUNGYEON CHO CHUNGNAM NATIONAL UNIVERSITY

hyunju527@gmail.com

- * Astrophysical fluids
 - Magnetized & Turbulent
 - (e.g Intracluster medium (ICM), Interstellar medium (ISM), solar winds)



ICM turbulence (Schuecker+04)



ISM turbulence (Armstrong+95)

- * Astrophysical fluids
 - Magnetized & Turbulent (e.g Intracluster medium (ICM), Interstellar medium (ISM), solar winds)
- * Energy cascade of turbulence
 - Energy injection (driving) is required

Magnetized Turbulent fluids Energy injection

Numerical simulations of driven MHD turbulence

* Various energy injection scales in ICM turbulence tens of kpc ~ hundreds of kpc

Simultaneous effect

Large scale structure formation shock Galaxy wakes

AGN jets

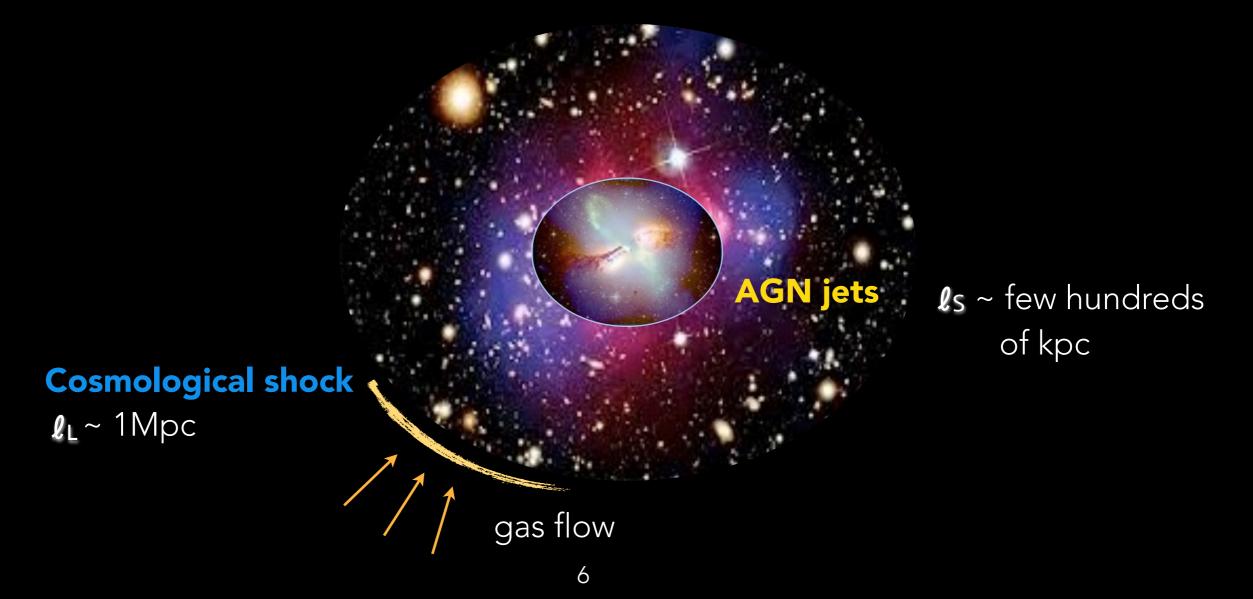
gas flow

Mergers

NUMERICAL METHOD

* Assumption (two-scale driving on ICM turbulence)

- Weakly magnetized medium
- Scale difference ~ order of magnitude
- Driving is dominant at small-scale ($_{\epsilon}$ s >> $_{\epsilon}$ L)



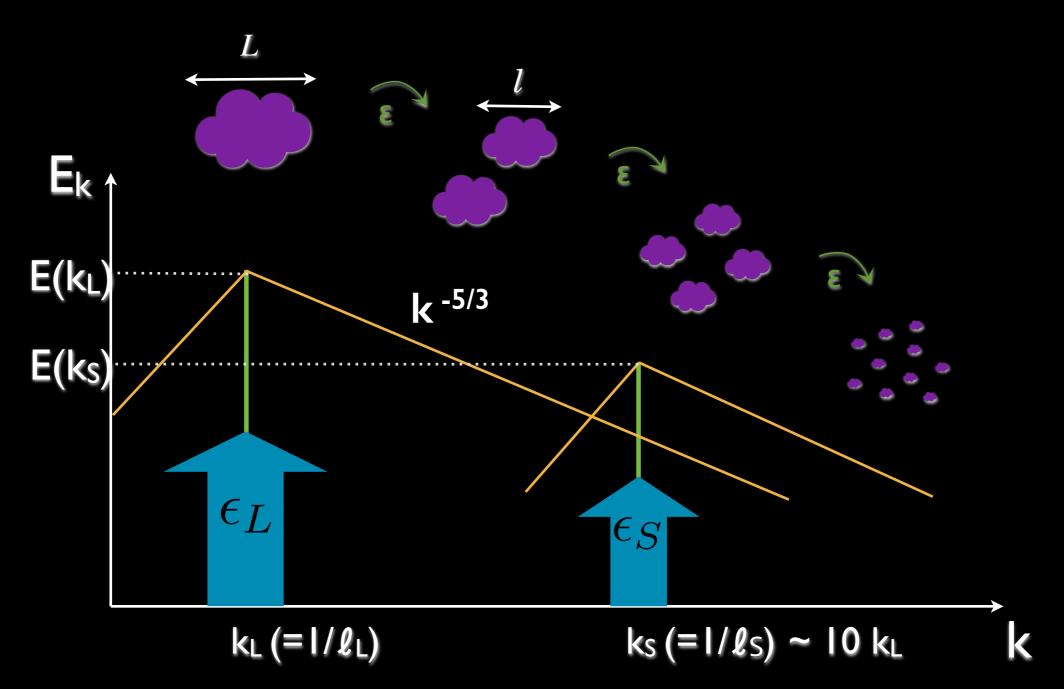
NUMERICAL METHOD

- * Incompressible MHD turbulence simulations
 - Pseudo-spectral code
 - Resolution : 256³ grids
 - External magnetic field $B_0=0.001$ (weak) (in the same unit as the Alfven speed)

- * Driving (injecting energy)
 - Driven at two ranges in Fourier space
 - · large-scale random forcing in $2 < k < \sqrt{12}$
 - \cdot small-scale random forcing in 15<k<26

NUMERICAL METHOD

* Spectrum of turbulence model driven at two scales



ANALYTIC EXPECTATION

* Expected scaling relation

According to Kolmogorov's theory (Kolmogorov 1941)

$$v = (\epsilon l)^{\frac{1}{3}} \& k \sim 1/l \quad \Longrightarrow$$

$$\frac{v_L}{v_S} = \left(\frac{\epsilon_L}{\epsilon_S}\right)^{\frac{1}{3}} \left(\frac{l_L}{l_S}\right)^{\frac{1}{3}} = \left(\frac{\epsilon_L}{\epsilon_S}\right)^{\frac{1}{3}} \left(\frac{k_S}{k_L}\right)^{\frac{1}{3}}$$

An approximation,

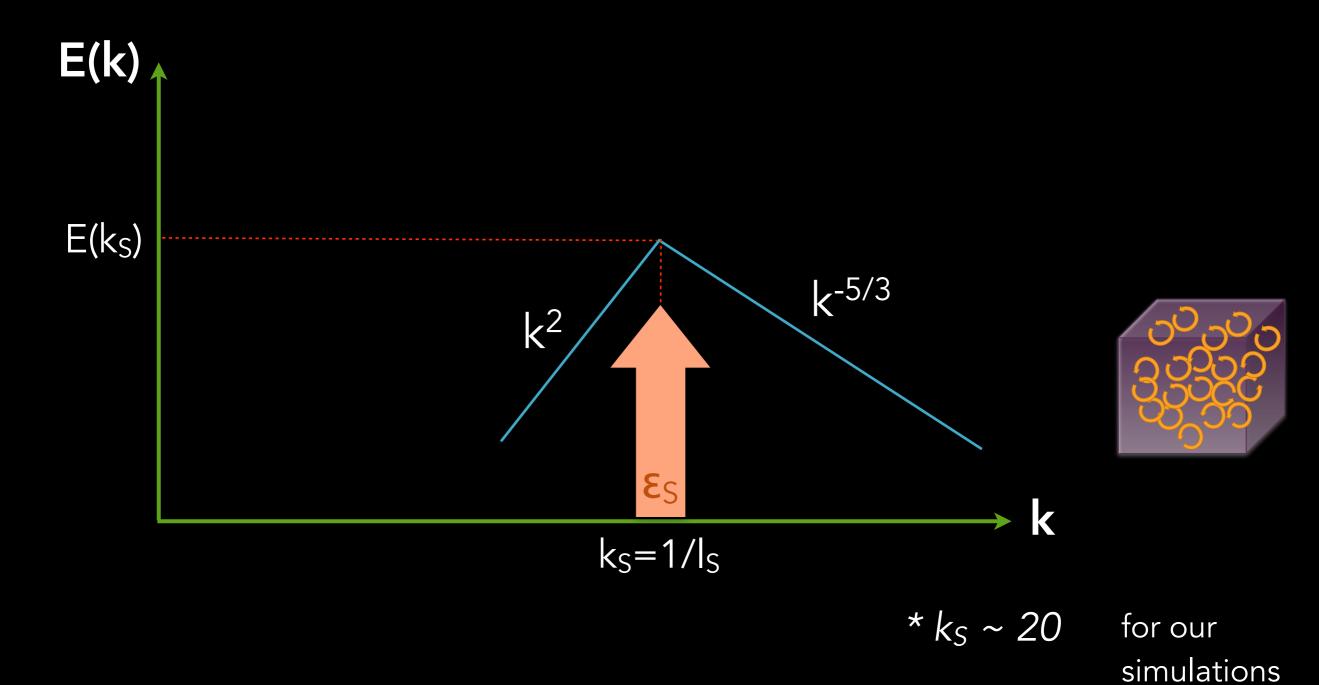
$$v \approx \sqrt{kE(k)} \qquad \qquad \Rightarrow \quad \frac{v_L}{v_S} \approx \frac{\sqrt{k_L E(k_L)}}{\sqrt{k_S E(k_S)}} = \left(\frac{\epsilon_L}{\epsilon_S}\right)$$

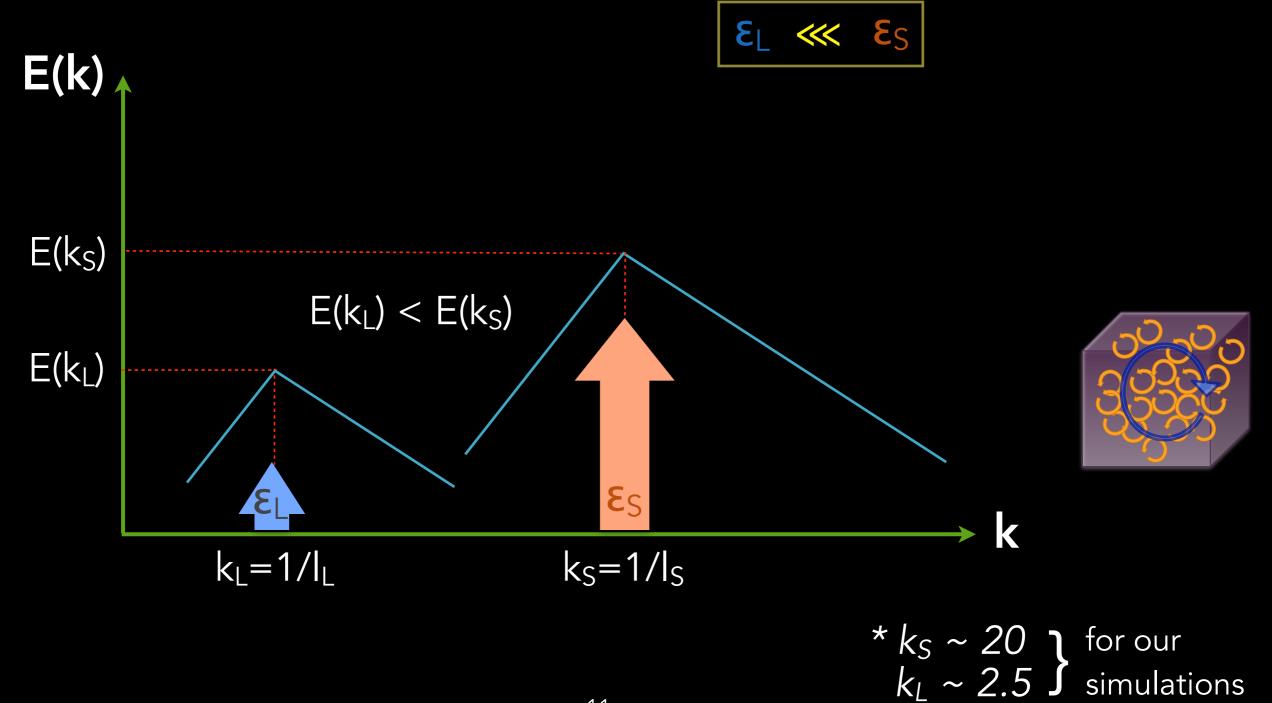
$$= \left(\frac{\epsilon_L}{\epsilon_S}\right)^{\frac{1}{3}} \left(\frac{k_S}{k_L}\right)^{\frac{1}{3}}$$

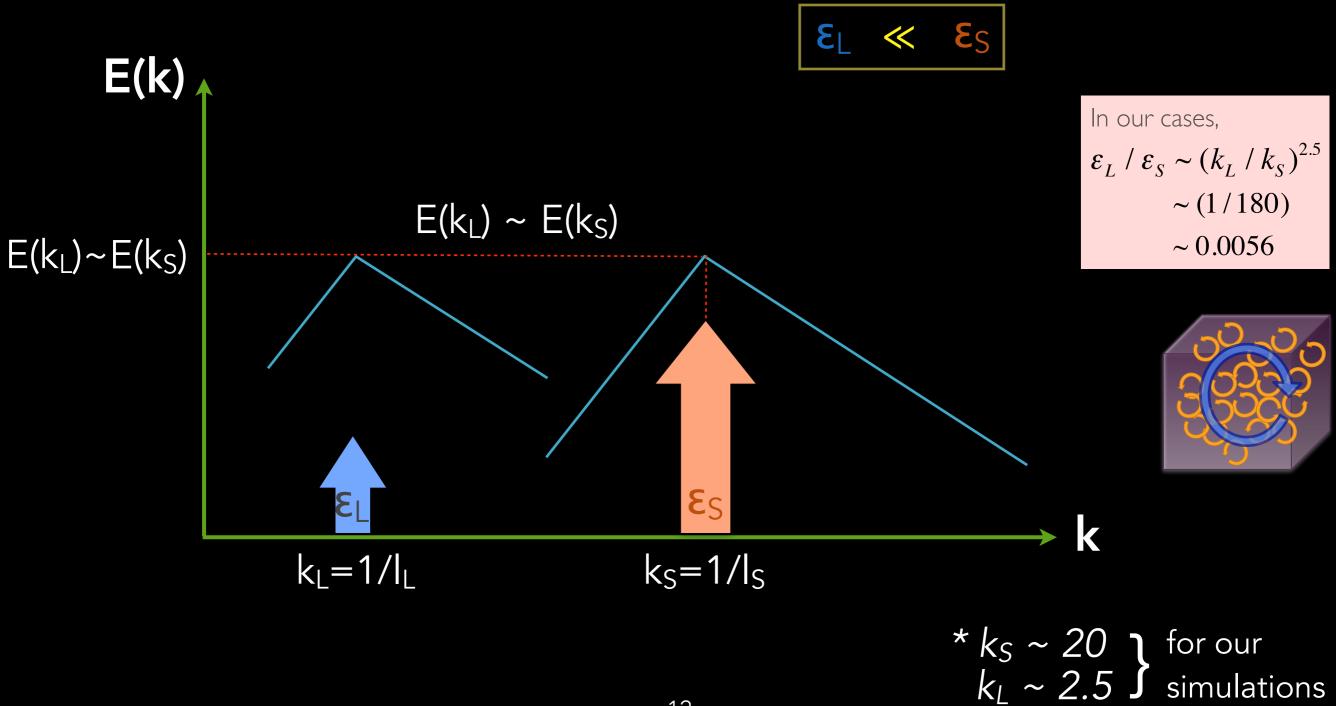
$$\frac{E(k_L)}{E(k_S)} = \left(\frac{\epsilon_L}{\epsilon_S}\right)^{\frac{2}{3}} \left(\frac{k_S}{k_L}\right)^{\frac{5}{3}} \implies$$

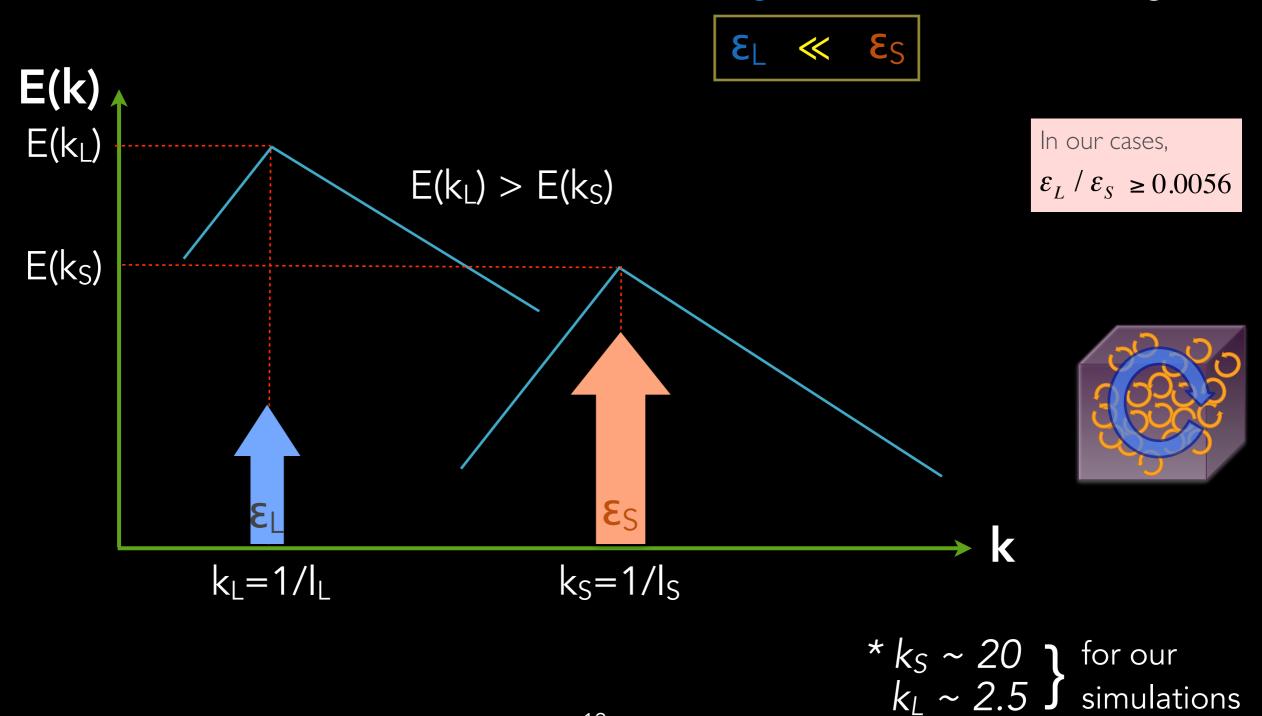
$$\frac{E(k_L)}{E(k_S)} = 32 \left(\frac{\epsilon_L}{\epsilon_S}\right)^{\frac{2}{3}} \quad \text{for our cases}$$
$$\left(\frac{k_s}{k_L} = 8\right)$$

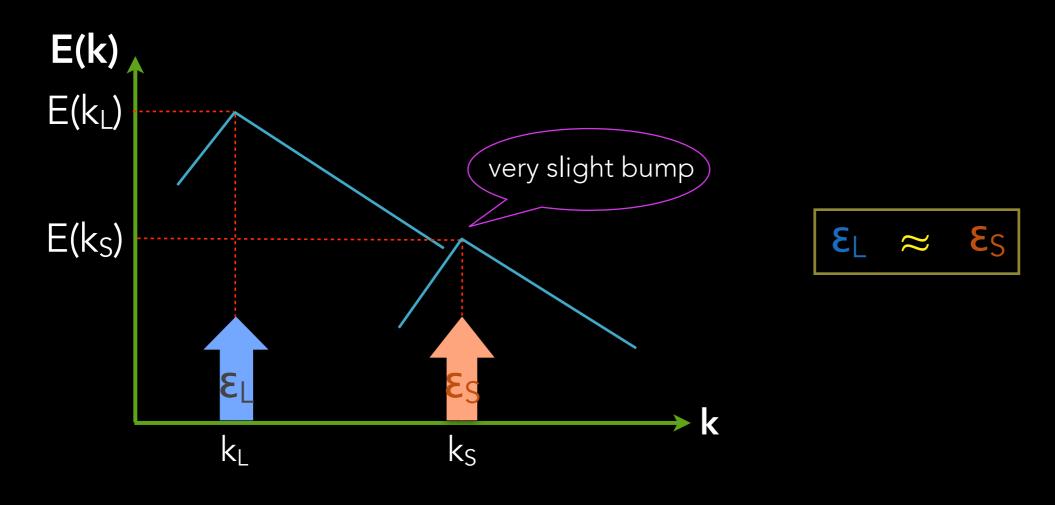
* Turbulence driven at one scale (small-scale driving)











* If
$$|\mathcal{E}_{L} > \mathcal{E}_{S}|$$
, small-scale peak \rightarrow invisible

* Incompressible HD test

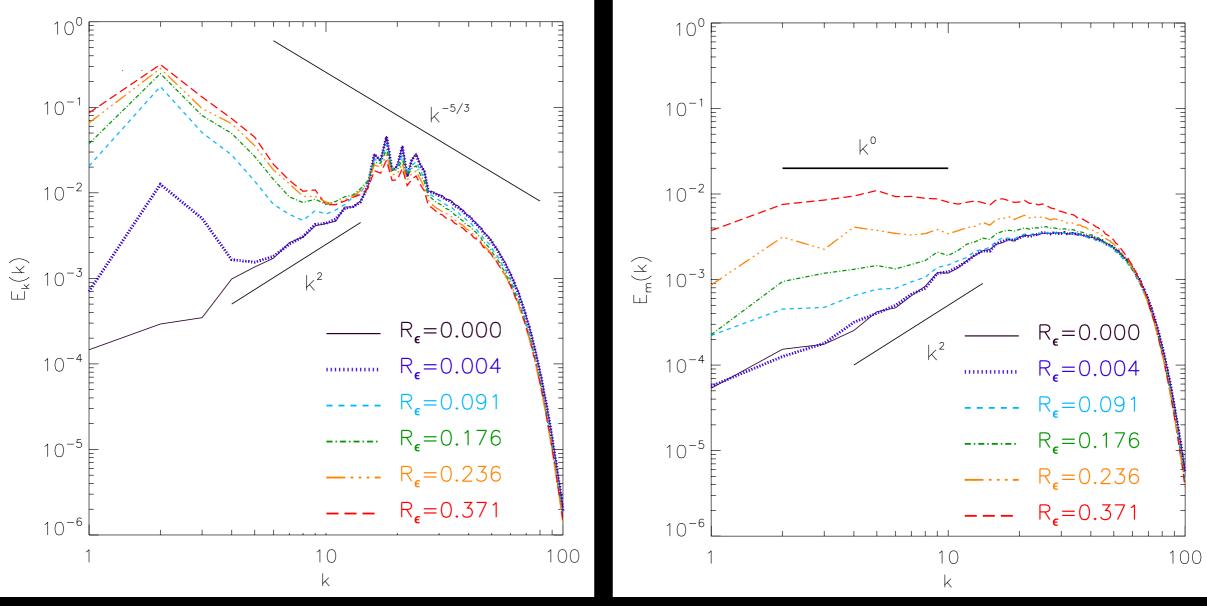


 $R_{\epsilon} = \epsilon_L / \epsilon_S$

* Weakly-magnetized incompressible MHD simulations

Kinetic spectra

Magnetic spectra



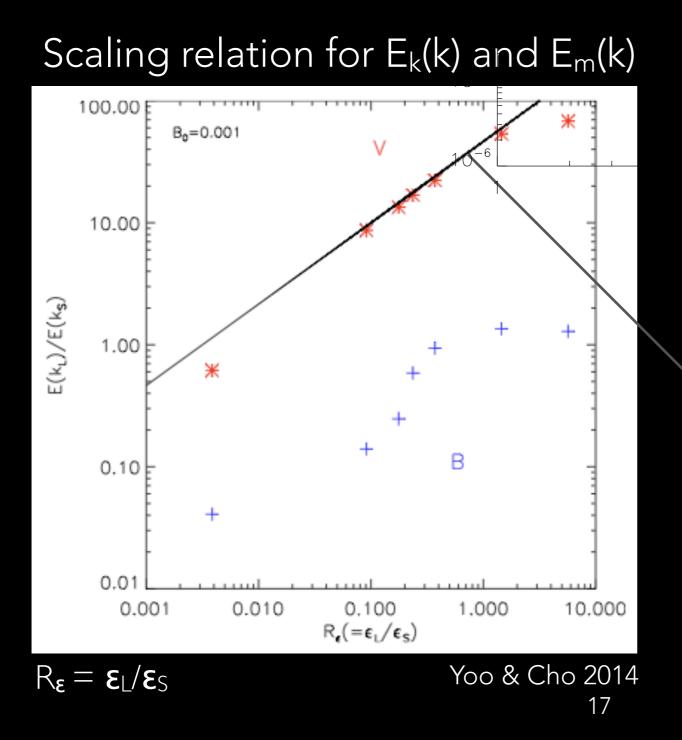
16

 $R_{\epsilon} = \epsilon_L / \epsilon_S$

Yoo & Cho 2014

RESULTS

* Weakly-magnetized incompressible MHD simulations



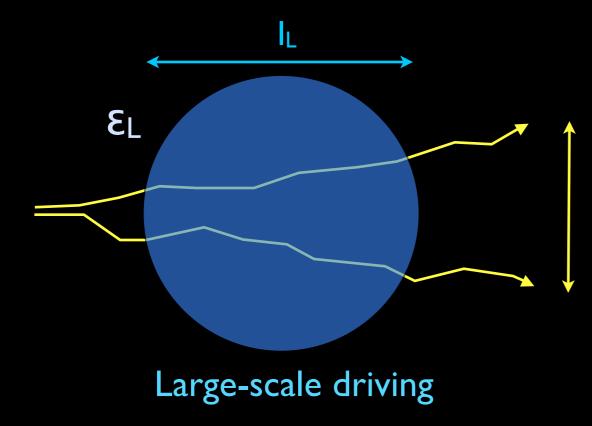
 $\frac{E(k_L)}{E(k_S)} = \left(\begin{pmatrix} 10.5 \\ \epsilon_L \\ \epsilon_S \end{pmatrix}^{5.0} \left(\frac{k_S}{k_L} \right)^{\frac{5}{3}} \right)^{\frac{5}{3}}$

$$k_{S} \sim 20$$
 for our $k_{L} \sim 2.5$ simulations

$$\frac{E(k_L)}{E(k_S)} = 32 \left(\frac{\epsilon_L}{\epsilon_S}\right)^{\frac{2}{3}}$$

- * : for kinetic energy spectrum
- + : for magnetic energy spectrum

* Magnetic field-line divergence

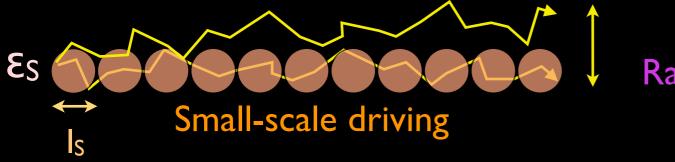


Faster-than-linear diverge

Large-scale driving is more important if

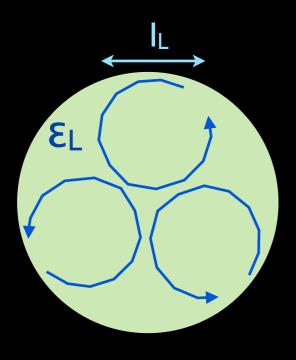
$$\frac{E(k_L)}{E(k_S)} \ge 1 \quad \text{or} \quad \frac{\varepsilon_L}{\varepsilon_S} \ge \left(\frac{l_S}{l_L}\right)$$

5/2



Random walk

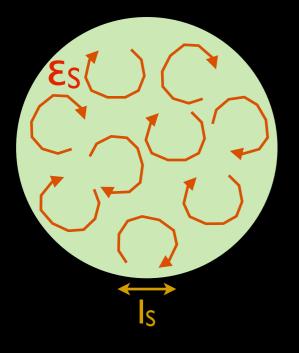
* Turbulence diffusion



Large-scale driving

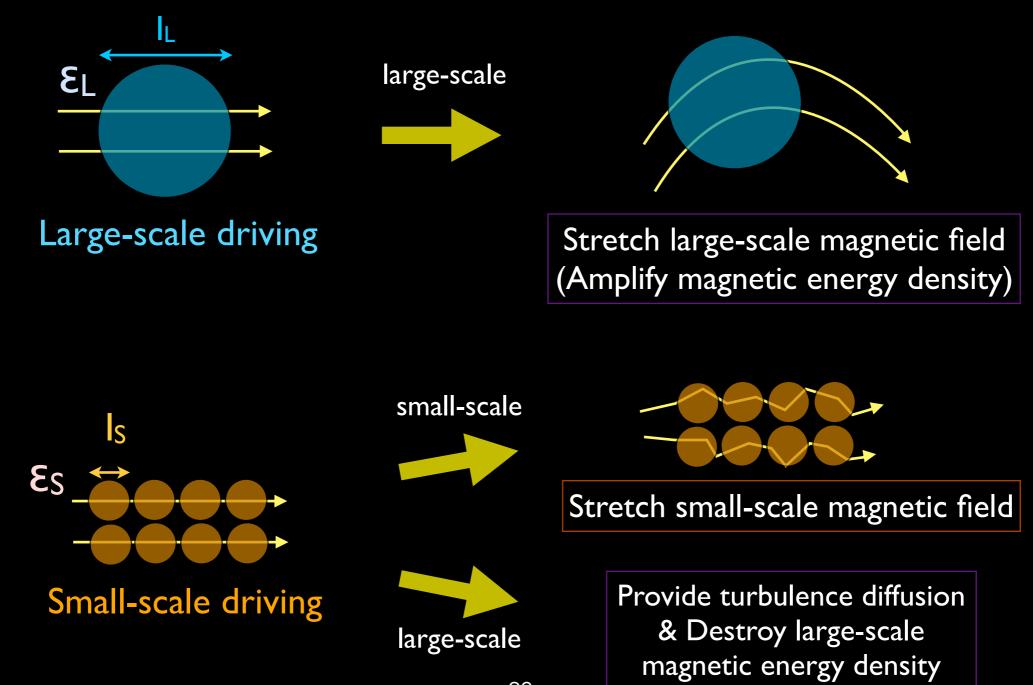
Large-scale driving is more important if

$$\frac{\varepsilon_L}{\varepsilon_S} \ge \left(\frac{l_S}{l_L}\right)^2$$

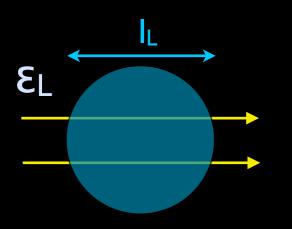


Small-scale driving

* Turbulence dynamo

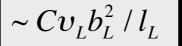


* Turbulence dynamo

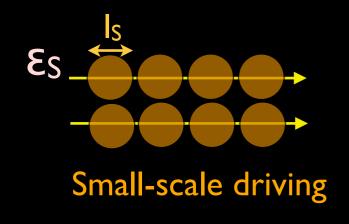


Large-scale driving

amplification rate of large-scale magnetic energy density by large-scale driving



Large-scale driving is more important if $\frac{v_L}{v_S} \ge \frac{l_S}{l_L} C^{-1}$ or $\frac{\varepsilon_L}{\varepsilon_S} \ge \left(\frac{l_S}{l_L}\right)^4 C^{-3}$



destroy rate of large-scale magnetic energy density by small-scale driving

 $\sim (l_{\scriptscriptstyle S} v_{\scriptscriptstyle S}) b_{\scriptscriptstyle L}^2 / l_{\scriptscriptstyle L}^2$

CONCLUSION

• We studied the effects of two-scale driving

∴ Kinetic energy spectrum shows two peaks ⇒ E(k_L) ≈ E(k_S), even if $\epsilon \, \lor \, \ll \epsilon \, \varsigma$

∴ Two-scale driving affect several physical properties (e.g. magnetic field-line divergence, turbulence diffusion and turbulence dynamo) ⇒ Large-scale driving can be more important, even if ∈ L ≪ ∈ S

More detailed results are presented in Yoo & Cho 2014 ApJ, 178, 99 (including compressible simulations & large-scale driving dominant cases) THANK YOU :)