

ICMs and the IPM: Birds of a Feather?

Tom Jones

University of Minnesota

2014-08-24 13:15

11 November, 2014

KAW8: Astrophysics of High-Beta Plasma in the Universe

Outline:

> ICM plasma is the dominant baryon component in the biggest gravitationally bound structures in the universe

- > ICMs are basic barometers of cosmic large scale structure formation dynamics and physics
- > ICMs are difficult to study (remote, faint and have cosmological evolutionary timescales)
- The Solar Wind plasma interplanetary medium (IPM)
 - surrounds us and is available for in-situ study
 - dynamical times are accessible

Plan: Lay out in general terms similarities and contrasts of these two environments

- What insights can the IPM provide to the study of ICMs?
- > What common questions of mutual interest can we identify?

ICMs are Dynamic:

- ✓ Exhibit large scale, structured flows
- ✓ Frequented by shocks
- ✓ Turbulent

ICMs are Dynamic:

Exhibit large scale, structured flows

ICMs are Dynamic:

- ✓ Exhibit large scale, struc
- ✓ Frequented by shocks
- ✓ Turbulent

Markevitch +

ICMs are Dynamic:

- ✓ Exhibit large sca
- Frequented by s
- ✓ Turbulent

Coma Schuecker + 04

The IPM is Very Hot, Very Dilute and Fully Ionized Plasma

The IPM is Dynamic:

- ✓ Exhibits large scale, structured flows
- ✓ Frequented by shocks
- ✓ Turbulent

The IPM is Very Hot, Very Dilute and Fully Ionized Plasma

Coronal Mass Ejection (CME) STEREO-HI

ynamic:

large scale, structured flows

ted by shocks

Solar Wind in Action:

Note Shocks from CMEs

STEREO-HI

The IPM is Very Hot, Very Dilute and Fully Ionized Plasma

More Shocks: Bow Shocks

The IPM is Dynamic:

- ✓ Exhibits large scale, str
- ✓ Frequented by shocks
- ✓ Turbulent

Earth's Bow Shock

The IPM is Very Hot, Very Dilute and Fully Ionized Plasma

The IPM is Dynamic:

- ✓ Exhibits large scale, structured flows
- ✓ Frequented by shocks

✓ <u>Turbulent</u>

Compare Some (Rough) Primitive IPM & ICM Values:

ores

*1 μG = 0.1 nT

Some (Rough) Characteristic Micro-Lengths: I

	Both plasmas are collisionless!			
Length:		IPM:	ICI	M :
Coulomb scattering length $\lambda_{coulomb}$ ~0.2 pc T _{keV} ² /n _e	١	~ 0.4 -4 AU	~.(02 – 200 kpc
electron thermal gyro rad $r_{ge} = \rho_e \simeq 1300 \text{ km T}_{keV}^{(1/2)}$	ius: /B _{µG}	~ 1 – 10 km	~ 3	300 - 4x10 ⁴ km
proton thermal gyro radiu $r_{gp} = \rho_1 \approx 5.6 \times 10^4 \text{ km T}_{keV}^{(1)}$	ls: ^{/2)} /Β _{μG}	~ 50 - 500 km	~ 1	LO ⁴ – 2x10 ⁶ km (r _{sun} ~ 10 ⁶ km)

IPM and ICM thermal gyroradii are very much smaller than λ_{coulomb}

Some (Rough) Characteristic Micro-Lengths: II

Length:		IPM:	ICI	VI:	
electron skin depth*: $\lambda_e = c/\omega_{pe}$ ~ 5km $n_e^{(-1/2)}$		~ 1 - 5 km	~ 5	50 – 500 km	
Ion inertial length**: $\lambda_i = c/\omega_{pi} \sim 200 \text{km } n_i^{(-1/2)}$		~60 – 200km	~2	000 – 20,000 km	
Debye length: $\lambda_{\rm D} \sim 0.24$ km (T _{keV} /n _e) ^{1/2}		~ .01 km (~ 10 m)	~ 2 – 100 km		
	IPM	PM λ_i is comparable to r_{gp} ICM λ_i is smaller than i			r _{gp}
* CN4 field were struction long the					

*EM field penetration length

**Ions decouple from electrons

Some (Rough) Dimensionless Plasma Measures

Measure:	Solar Wind:	ICM:
$\beta = P/(B^2/8\pi) = (6/5) c_s^2/v_A^2$ ~ 8x10 ⁴ n _e T _{kev} /B _{µG} ²	~ 0.1 - 80	~ 50 – 10 ³
Ion gyro/inertial length $r_{gi}/\lambda_i = \rho_i/\lambda_i \sim \sqrt{\beta}$	~ 0.3 - 10	~ 7 - 30
$N_d = n_e \lambda_D^3 \simeq 10^{13} T_{keV}^{(3/2)} / n_e^{(1/2)}$	~ 10 ¹⁰	~ 10 ¹⁴

ICM is High β ; IPM can be High β (border-line?)

Both media are "good plasmas" N_d >> 1 (support collective plasma wave families)

Some (Rough) Characteristic Velocities

Velocity:	IPM:	ICM:
Ion acoustic (sound) speed: $c_s = \sqrt{(5P/3\rho)} \sim 500 T_{keV}^{(1/2)} km/s$	~ 50 km/s	~ 500 – 1500 km/s
Alfven speed: $v_A = B/\sqrt{(4\pi\rho)} \sim 2 B_{\mu G}/n_e^{(1/2)} \text{ km/s}$	~20 – 100 km/s	~ 20 – 100 km/s
Turbulent velocities: δv	~ 10 - 50 km/s	~ 300 km/s *
Bulk flows:	~ 300 – 600 km/s	Up to ~ 2000 km/s
		*Assuming P _{turb} ~ 0.1 c _s Not measured directly

Turbulence in both IPM and ICM should be compressional ($\delta v/c_s$ can be ~ 1)

IPM turbulence should be "MHD" ($\delta v < v_A$) ICM turbulence (on large scales) should be "HD" ($\delta v > v_A$) (MHD for $l < l_A \sim L (v_A / \delta v)^3$)

Some (Rough) Shock Parameters

Parameter:	Solar Wind (IPM):	ICM:
$M_s = V_s/c_s$	< a few	< a few
$M_A/M_s \simeq \beta^{1/2}$	~ 1	~ 10
Density compression	~ 2 - 3	~ 2 - 3

IPM and ICM shocks have similar sonic (fast mode) Mach numbers

ICM shocks (mostly) have higher Alfvenic Mach numbers than IPM shocks

That is: IPM Shocks are more highly magnetized than ICM shocks

Spitkovsky

Intermediate Summary

IPM and ICM plasmas both:

- are "good plasmas" (e.g., carry plasma waves)
- collisionless Coulomb collision lengths can approach system size
- have much smaller particle kinetic scales (e.g., gyro radii, inertial lengths)
- host compressible turbulence
 - contain shocks with sonic Mach numbers of a few

IPM magnetic field is relatively stronger, so:

- IPM turbulence is MHD on largest scales, while
 - ICM turbulence is HD on largest scales,
 - but probably MHD on smaller scales
 - ICM shocks are less magnetized than IPM shocks,
 - with larger Alfvenic Mach numbers

 \checkmark

 \checkmark

 \checkmark

Some Shock Data:

Bullet Cluster Shock Profile

Some Turbulence Data:

Coma Cluster Density Fluctuations (Compressible Turbulence)

$$\ell \sim \frac{V_w}{f} \sim 400 \text{ km } \frac{1}{f} \sim 3 \times 10^{-6} \text{ AU } \frac{1}{f}$$

 $f \sim 10^{-1} \text{ Hz} \rightarrow 4000 \text{ km} (10 \text{ s of } \lambda_i)$

Inertial range ~ 1000 km – .01 AU

IPM Magnetic Field Turbulent Spectrum

Note: Compressive modes predominantly slow mode ($\delta B \& \delta \rho$ anticorrelated)

Summary

- > The Solar Wind and ICMs have important common properties
- Shocks & Turbulence of similar strengths
- The Solar Wind is somewhat more magnetized That may influence details
- The physics of the Solar Wind is known in some detail Down to kinetic scales
- > This may be helpful in understanding what may be important in ICM physics

감사합니다!