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New constraints on large-scale thermal conductivity
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Cluster radial temperature profiles
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• XMM, Suzaku results similar (Molendi & Leccardi 08; George et al. 09; ...)



A2029, a prototypical hot relaxed cluster
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Chandra data, Vikhlinin et al. 06



If the cluster were a solid body ...
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no cooling, 0.3 Spitzer isotropic conduction

• conduction erases T gradient

Russell 14



Allow the cluster to maintain hydrostatic equilibrium:

• Assume constant grav. potential

• Let the gas redistribute quasistatically

• Outer boundary (at r ∼ 3 Mpc) open for gas and heat flow



If the cluster is hydrostatic ...

r 2500 r 500
0 Gyr

1
2

8

no cooling, 0.3 Spitzer isotropic conduction, no gas redistribution

Russell 14



If the cluster is hydrostatic ...

r 2500 r 500
0 Gyr
1
8

no cooling, 0.3 Spitzer isotropic conduction, gas redistribution

Russell 14

• T gradient maintained because of cluster compression

(result very similar to McCourt 13)



Evolution of gas density profile

r 2500 r 500

0 Gyr
1

8

no cooling, 0.3 Spitzer isotropic conduction

Russell 14



Evolution of gas density profile
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cooling, 0.3 Spitzer isotropic conduction

Russell 14

• for r > 0.5 r 2500, result doesn’t depend on details of heating and feedback in cool core



Observed differential f gas profiles in hot relaxed clusters
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T > 5 keV, z < 0.25 relaxed clusters



• The sample of relaxed clusters should contain clusters of different “ages”
(time since last major disturbance)

• If conduction is present, clusters of different age should have different f gas

= scatter in the sample



Evolution of differential f gas profile with conduction
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Evolution of differential f gas profile with conduction

Russell et al. 14
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Evolution of differential f gas profile with conduction
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Evolution of differential f gas profile with conduction
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Other hot relaxed clusters
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Other hot relaxed clusters 10% Spitzer

14



Conclusions

• Large-scale heat conduction does not erase the cluster radial temperature

gradients (as shown before)

• What it does change is f gas profile

(effect seen in cosmological simulations with conduction, E. Rasia, priv. comm.)

• Under simple assumptions, κ > 5 – 10% Spitzer (in the cluster radial direction)

contradicts the observed small scatter in f gas at r ∼ r 2500 in hot, relaxed clusters

• Cosmological simulations including heat conduction and cooling, and the relaxed

cluster selection as in Mantz 14, may place stronger constraints



Constraining plasma viscosity using cold fronts



Evolution of a cold front

ZuHone 11 (FLASH, resolution 2 kpc, no magnetic field, no viscosity)



Observed cold fronts are sharp and mostly stable
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A2142 wavelets

200 kpc

Upon close inspection, some fronts are disturbed



Effect of isotropic viscosity on cold front stability

inviscid 0.1 Spitzer

Roediger 13, Virgo-like cluster

• slightly perturbed front in Virgo cluster indicates viscosity
∼
> 0.1 Spitzer



Magnetic field structure at cold fronts

model MC3a t = 3.0 t0

log ρ
t = 3.0 t0 
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Magnetic field suppresses instabilities

ZuHone 11 (FLASH, MHD, resolution 2 kpc)



Magnetic field makes viscosity anisotropic

Spitzer (isotropic) and Braginskii (anisotropic) viscosity:

Inviscid

t = 1.75 Gyr
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Slices of temperature through the center of the simulation domain for the “Virgo” simulations for the epochs t = 2.25 andZuHone 14 (Athena, MHD, resolution 1 kpc)



Conclusions (viscosity)

• Difficult to distinguish observationally a suppressed isotropic viscosity (say, 0.1

Spitzer) from unsuppressed anisotropic + effect of stretched magnetic fields

• Accurate comparison with well-observed cold fronts promising (coming soon)

Qualitatively, front shapes are consistent with full Braginskii viscosity and the

expected magnetic field, or 0.1× Spitzer isotropic



Another shock for the Bullet Cluster

and a “smoking gun” model for radio relics

Tim Shimwell (Leiden), Maxim Markevitch (GSFC)



1E 0657

Chandra X-ray image



1E 0657

ATCA 1.1–3.1 GHz image

(Shimwell 14a)



1E 0657

Chandra X-ray image



1E 0657 — reverse shock?

Chandra X-ray image



1E 0657 — reverse shock?

X-ray brightness across relic

Fit corresponds to shock with M = 1.7 – 5.5 (uncertain 3D geometry)
(Shimwell 14b)



1E 0657 — reverse shock?

Gas temperature across relic

90% error bars (Shimwell 14b). Shock front “suggested” but not unambiguously confirmed



A “reverse shock” to the famous western shock

• Although T jump inconclusive, unlikely to be anything else

• X-ray M = 2.5+1.3
−0.8 (combining gas density and T constraints)

• Radio slope of tail region of relic + Fermi type I acceleration → M = 1.9 – 2.2

Radio and X-ray M in agreement — as in other well-observed shock fronts

• Tail is connected to a bright “bulb”, which looks like a just-died radio galaxy

— source of aged electrons for re-acceleration? (a gun that’s still smoking)

• Conjecture: ICM cloud polluted by a radio galaxy (disrupted ghost bubble) stays in

the periphery, forming a well-defined pancake (or sausage) along the equipotential

surface, waiting for a shock passage to re-accelerate it.

Would explain a few of Huub’s riddles
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