Physics of Hydrodynamic Turbulence and Passive Scalar Transfer

6th Korean Astrophysics Workshop on Fundamental Process of Astrophysical Turbulence

Asia Pacific Center for Theoretical Physics (APCTP) Pohang, Korea 16 -- 19 November, 2011

Toshiyuki Gotoh

Nagoya Institute of Technology

Kolmogorov's turbulence theory (1941)

Milestone of turbulence theory

Prandtl, Onsager, von Weizsaeker, Heisenberg

Cambridge Univ. Press 2011

Velocity and scalar increments

$$egin{aligned} U &= u(x+r) - u(x) \ V &= v(x+r) - v(x) \ \Theta &= heta(x+r) - heta(x) \end{aligned}$$

Two hypotheses and dimensional analysis

1. At large R and small r, turbulent field is locally homogeneous and isotropic, and the probability distribution of U and V are uniquely determined by

 \mathcal{E} finite as $\mathcal{V} \longrightarrow 0$

 $\overline{\mathcal{E}}$ \mathcal{V} \longrightarrow $\eta = (v^3/\overline{\mathcal{E}})^{1/4}$ Average energyViscosityKolmogorov lengthdissipation ratethe smallest scale

2. When $\eta \ll t$, the probability distribution is independent of the viscosity

Inertial Range $\eta \ll r \ll L$

PDF
$$(\bar{\epsilon}r)^{2/3}P(U,V,r) = \bar{P}(U/(\bar{\epsilon}r)^{1/3}, V/(\bar{\epsilon}r)^{1/3})$$

(Probability Density Function)

$$egin{aligned} {\it Moment} & \langle U^p V^q
angle \propto r^{\zeta_{p,q}}, \quad \zeta_{p,q} = rac{p+q}{3} \ & \langle U^2
angle = C_2 ar \epsilon^{2/3} r^{2/3} \end{aligned}$$
 Normal scaling

 $E(k) = K\bar{\epsilon}^{2/3}k^{-5/3}$ Kolmogorov's Spectrum

$$\left\langle U^3
ight
angle = -rac{4}{5}ar{\epsilon}r$$

Kolmogorov's 4/5 Law (Onsager 1945) (asymptotically exact)

Characteristic time

$$au_r = rac{r}{(ar{\epsilon}r)^{1/3}} = ar{\epsilon}^{-1/3}r^{2/3}$$

DNS of HIT (Homogeneous Isotropic Turbulence) and passive scalar

Periodic boundary condition (homogeneity)

$$\begin{split} u(x,t) &= \sum_{|k| \leq K_{max}} u(k,t)e^{ik \cdot x}, \quad u(k,t) = \frac{1}{L_{box}^3} \int_{L_{box}^3} u(x,t)e^{-ik \cdot x} dx \\ &\left(\frac{\partial}{\partial t} + \nu k^2\right) u(k,t) = M(k) : \sum_{k=p+q} u(p,t)u(q,t) + f(k,t) \\ &\left(\frac{\partial}{\partial t} + \nu k^2\right) \theta(k,t) = ik \cdot \sum_{k=p+q} u(p,t)\theta(q,t) + f_{\theta}(k,t) \\ & \qquad M_{lmn}(k) = \frac{i}{2}(k_m P_{ln}(k) + k_n P_{lm}(k)), \\ & \qquad P_{ij}(k) = \delta_{ij} - \frac{k_i k_j}{k^2} \\ & \qquad Exact \ sol. \ of \ Poisson \ eq. \ for \ pressure \end{split}$$

High accuracy Efficient use of computer resources in spatial resolution

Nagoya Institute of Technology

Sketch of Pleiades cluster by Galileo (1610)

Galileo's telescope (1610)

Great wall in the universe de Lapparent et al. (1986) http://www.nhk.or.jp/school/junior/yougo26.html#010

Subaru Telescope (1999)

Energy budget in scale

$$D_{LL}(r) = \left\langle U^2 \right\rangle \quad D_{LLL}(r) = \left\langle U^3 \right\rangle$$
 $K\!H\!K \, equation \quad rac{4}{5}ar{\epsilon}r = -D_{LLL} + 6
u rac{dD_{LL}}{dr} + Z_{force}(r)$

4/5 law

- •KHK equation is satisfied
- •Slow approach to 4/5 law with increase of R_{λ}

Intermittency deviation from Kolmogorov (K41) theory

Structure functions of velocity increments

In Kolmogorov Theory

$$(\bar{\epsilon}r)^{2/3}P(U,r) = \bar{P}(U/(\bar{\epsilon}r)^{1/3}) \qquad \eta \ll r \ll L$$

Intermittency

Statistical law changes with scale !

- What is the law of change of PDF with scale?
- How are PDFs predicted from Navier Stokes eq.
- Does the universality exist? If so, where?

What is the statistics of passive scalar?

Universality of passive scalar fluctuations at small scales in homogeneous turbulence

Nagoya Inst. Tech.

T. Gotoh, T. Watanabe and Y. Suzuki

Acknowledegment HPC, JHPCN, JSPS, KITP, NIFS, NUCC

Kolmogorov theory for turbulence Obukhov-Corrsin theory for passive scalar

Velocity and scalar increments

$$egin{aligned} U &= u(x+r) - u(x), & V &= v(x+r) - v(x) \ egin{aligned} \Theta &= heta(x+r) - heta(x) \end{aligned}$$

Inertial Range
$$\eta \ll r \ll L$$
 Sc=1

PDF
$$(\bar{\epsilon}r)^{2/3}P(U,V,r) = \bar{P}(U/(\bar{\epsilon}r)^{1/3}, V/(\bar{\epsilon}r)^{1/3})$$

 $\bar{\chi}^{1/2}\bar{\epsilon}^{1/6}r^{2/3}Q(U,\Theta,r) = \bar{Q}\left(U/(\bar{\epsilon}r)^{1/3}, \Theta/(\bar{\chi}^{1/2}\bar{\epsilon}^{-1/6}r^{1/3})\right)$

Moment

$$egin{aligned} &\langle U^p V^q
angle \propto r^{\zeta_{p,q}}, \quad \left\langle U^3
ight
angle &= -rac{4}{5}ar{\epsilon}r, \qquad \zeta_{p,q} = rac{p+q}{3} \ &\langle \Theta^p U^q
angle \propto r^{\xi_{p,q}}, \quad \left\langle U\Theta^2
ight
angle &= -rac{4}{3}ar{\chi}r, \qquad \xi_{p,q} = rac{p+q}{3} \end{aligned}$$

Scaling exponents are universal

Celani et al. (2000, 2001); Celani & Vergassola, (2001) Arad et al. (2001); Biferale et al. (2004)...

Is scalar scaling exponent universal?

Object

to examine the scaling exponents ζ_q^{θ} for different scalar injection

DNS of passive scalar turbulence

$$egin{aligned} &rac{\partial u}{\partial t}+u\cdot
abla u&=-
abla p+
u
abla^2 u+f, \quad
abla\cdot u&=0, \quad
ho=1\ &rac{\partial heta}{\partial t}+u\cdot
abla heta&=\kappa
abla^2 heta+f_{ heta} \end{aligned}$$

Velocity: Homogeneous Isotropic Steady

External force: isotropic, Gaussian, white in time, low k band $1 \le |\mathbf{k}| \le 2$

Scalar : Homogeneous Steady scalar injction: Case R : isotropic, Gaussian, white in time, low k band $1 \le |\mathbf{k}| \le 2$ Case G : uniform mean scalar gradient $f_{\theta} = -\Gamma u_3$ Wide range, Anisotropic, Intermittent

DNS parameters

Case R
$$\Gamma=0$$
 $S_c = \nu/\kappa = 1$
Case G $\Gamma=1$ $S_c = \nu/\kappa = 1$

Run	G1	G2	G3	G4	R1
N ³	256 ³	512 ³	1024^{3}	2048^{3}	2048 ³
R_{λ}	174	263	468	586	688
$v(\times 10^{-3})$	1.3	0.60	0.24	0.13	0.13
$K_{max}\bar{\eta}$	0.99	1.09	1.05	1.39	1.36
u'/LT_{av}	27.1	5.62	3.97	2.29	2.75

For *R* in the inertial convective or viscous convective range

$$egin{aligned} &\int_{r\leq R}rac{\partial}{\partial r_j}\Big\langle \delta u_j(r,t)(\delta heta(r,t))^2\Big
angle dr &=4\pi R^2rac{1}{4\pi R^2}\int_{r=R}\Big\langle \delta u_j(r,t)(\delta heta(r,t))^2\Big
angle rac{r_j}{r}dS\ &=4\pi R^2\Big\langle \delta u_L(R,t)(\delta heta(R,t))^2\Big
angle_{sp}\ &=-4ar\chirac{4\pi R^3}{3}\ &u_L(R) \end{aligned}$$

4/3 law holds for the spherical average

 $\left< \delta u_L(R,t) (\delta heta(R,t))^2 \right>_{sp} = -rac{4}{3} ar{\chi} R$

Spherical average $\langle A \rangle_{\rm sp} \equiv \frac{1}{4\pi R^2} \int_{r-R} A(r) dS$

Gotoh et al (JOT 2011)

4/5 and 4/3 laws

Case R (isotropic random source)

$T = < T > + \theta = \Gamma z + \theta$

Nagoya Institute of Technology

Scaling exponents of structure functions

In the inertial convective range $\overline{\eta} << r << L$ $S_q^L(r) = \langle (\delta u(r))^q \rangle \propto r^{\zeta_q^L}, \qquad \delta u(r) = (u(x+r) - u(x)) \cdot r/r$ $S_q^T(r) = \langle (\delta v(r))^q \rangle \propto r^{\zeta_q^T}, \qquad \delta u(r) = (u(x+r) - u(x)) \cdot (I - rr/r)$ $S_q^{\theta}(r) = \langle (\delta \theta(r))^q \rangle \propto r^{\zeta_q^{\theta}}, \qquad \delta \theta(r) = \theta(x+r) - \theta(x)$ $S_q^{\theta L}(r) = \left\langle (\delta u(r)\delta \theta(r)^2)^q \right\rangle \propto r^{\zeta_q^{\theta L}}$

Local scaling exponent

$$\zeta_q^lpha(r) = rac{\mathrm{d}\ln S_q^lpha(r)}{\mathrm{d}\ln r}, \qquad lpha = L, \ T, \ heta, \ \ heta L$$

Anisotropy

Case G

Scalar injection statistics $f_{\theta}(x,t) = -\Gamma u_3(x,t)$ wide range axisymmetric reflection invariant intermittent $\langle f_{\theta}(x,t) \rangle = 0$ $\langle f_{\theta}(x+r,t)f_{\theta}(x,t)
angle = \Gamma^2 \langle u_3(x+r,t)u_3(x,t)
angle$ $=\Gamma^2 u'^2 \left(rac{1}{3r^2}rac{d}{dr}(r^3f)-rac{r}{3}rac{df(r)}{dr}P_2(\cos\phi)
ight)$ Scalar statistics axisymmetric reflection invariant $S_{2q}(r,\phi)=\sum_{l=1}^{\infty}S_{2q}^{(2l)}(r)P_{2l}(\cos\phi)$ $=S_{2q}^{(0)}(r)+S_{2q}^{(2)}(r)P_2(\cos\phi)+S_{2q}^{(4)}(r)P_4(\cos\phi)\cdots$

Isotropic sector

Nagoya Institute of Technology

Local scaling exponents in the inertial -convective range are not equal at high order !

Gotoh et al (JOT 2011)

Summary

Small scale fluctuations

- Anisotropy in the scalar field in case G (uniform gradient) is weak and mostly from *I=2* sector
- Intermittency in case G is stronger than in case R

Universality of scalar scaling exponents

1: There is no universality of the scaling exponents of high order structure function

2: The Reynolds number is too low to observe the asymptotic scaling exponents

Eddy damping, Vertex correction, and Langevin modeling for homogeneous isotropic turbulence

T. Gotoh (Nagoya Inst. of Tech.)

- R. Rubinstein (NASA Langley)
- W. Bos (CNRS,Lyon)
- S. Hatanaka (Nagoya Inst. of Tech.)

Navier-Stokes Eq.

$$\left(rac{\partial}{\partial t}+
u k^2
ight)u(k,t)\ =\ M(k):\sum_{k=p+q}u(p,t)u(q,t)\equiv N(k,t)$$

Filtering

$$\begin{split} u(k,t) &= \mathcal{P}(k) u(k,t) + (1-\mathcal{P}(k)) u(k,t) \qquad \mathcal{P}(k) = H(k_c - |k|) \\ &= u^{<}(k,t) + u^{>}(k,t) \end{split}$$

Equation of GS field

$$\begin{split} \left(\frac{\partial}{\partial t} + \nu k^2\right) u^{<}(k,t) &= N^{<}(k,t) + S^{<}(k,t) \\ N^{<}(k,t) &= \mathcal{P}(k) \sum M(k) : u^{<}(p,t) u^{<}(q,t), \\ S^{<}(k,t) &= \mathcal{P}(k) N(k,t) - N^{<}(k,t) \\ \end{split}$$
SGS contributions

Statistical projection

$$S^{<}(k,t) = C_1(k,t)u^{<}(k,t) + C_2(k,t)N^{<}(k,t) + R^{<}(k,t)$$

Correlated with $u^{<}$ and $N^{<}$

Uncorrelated part

Assumption

 C_1 and C_2 are scalar functions of |k|

Kraichnan(1976) Domaradzki et al. (1987) Chasnov (1991) Metais & Lesieur (1992)

Langford & Moser (1999,2004)

Statistical projection

 $\begin{aligned} & \mathsf{Eddy} \ \mathsf{damping} & \mathsf{Vertex} \ \mathsf{correction} \\ & S^{<}(k,t) = \underbrace{C_1(k,t) u^{<}(k,t) + C_2(k,t) N^{<}(k,t) + R^{<}(k,t)}_{\mathsf{Correlated}} & \mathsf{Uncorrelated} \ \mathsf{part} \end{aligned}$

$$egin{pmatrix} \left(egin{array}{cc} \langle u^{<}(k,t)\cdot u^{<}(-k,t)
angle & \langle N^{<}(k,t)\cdot u^{<}(-k,t)
angle \ \langle u^{<}(k,t)\cdot N^{<}(-k,t)
angle & \end{pmatrix} \left(egin{array}{cc} C_{1}(k,t) & C_{1}(k,t) \ C_{2}(k,t) & \end{pmatrix} = \left(egin{array}{cc} \langle S^{<}(k,t)\cdot u^{<}(-k,t)
angle \ \langle S^{<}(k,t)\cdot N^{<}(-k,t)
angle & \end{pmatrix}
ight) \left(egin{array}{cc} S^{<}(k,t)\cdot u^{<}(-k,t)
angle & C_{1}(k,t) \ \langle S^{<}(k,t)\cdot N^{<}(-k,t)
angle & \end{pmatrix}
ight) \left(egin{array}{cc} S^{<}(k,t)\cdot u^{<}(-k,t)
angle & C_{1}(k,t) \ \langle S^{<}(k,t)\cdot N^{<}(-k,t)
angle & C_{2}(k,t) \ \langle S^{<}(k,t)\cdot N^{<}(-$$

$$\begin{pmatrix} C_1(k,t) \\ C_2(k,t) \end{pmatrix} = J^{-1}(k,t) \begin{pmatrix} K(k,t) & -H(k,t) \\ -H(k,t) & Q(k,t) \end{pmatrix} \begin{pmatrix} D(k,t) \\ F(k,t) \end{pmatrix}$$

where

$$\begin{split} J(k,t) &= Q(k,t)K(k,t) - H(k,t)^2, \quad Q(k,t) = \left\langle u^{<}(k,t) \cdot u^{<}(-k,t) \right\rangle \\ H(k,t) &= \left\langle N^{<}(k,t) \cdot u^{<}(-k,t) \right\rangle, \quad K(k,t) = \left\langle N^{<}(k,t) \cdot N^{<}(-k,t) \right\rangle \\ D(k,t) &= \left\langle S^{<}(k,t) \cdot u^{<}(-k,t) \right\rangle, \quad F(k,t) = \left\langle S^{<}(k,t) \cdot N^{<}(-k,t) \right\rangle \end{split}$$

DNS of steady turbulence

 $N = 2048^3, \ R_\lambda \approx 690, \ k_0 = 1, \ T_{av} = 1.8T_{eddy}, \ k_c = 16, 32, 64$

=?

What is the statistics of the uncorrelated part?

$$ig \langle R^{<}(k,t)
angle = 0$$

 $ig \langle R^{<}(k,t) R^{<}(-k,s)
angle = F(k,(t-s)/ au_k) \qquad au_k$

PDF of $R^{<}(k,t)$?

Langevin modeling of SGS contributions

Eddy damping + random force

$$\begin{array}{lcl} S^{<}(k,t) &=& C_{1}(k,t)u^{<}(k,t) + C_{2}(k,t)N^{<}(k,t) + R^{<}(k,t) \\ \\ &\approx& C_{1}(k,t)u^{<}(k,t) + R^{<}(k,t) \end{array}$$

Decorrelation time of the random force is given by Lagrangian time (sweeping effects are not dominant)

Future problem

Is PDF of the random part Gaussian ?

What is the statistical correlation at two time ?

$$S^{<}(k,t) = \int_{-\infty}^{t} C_{1}(k,t,s) u^{<}(k,s) ds + \int_{-\infty}^{t} C_{2}(k,t,s) N^{<}(k,s) ds + R^{<}(k,t) ds +$$

Acknowledgments NIFS and NUCC