Intrinsic Rotation and Dynamics of Internal Transport Barriers with Reversed Magnetic Shear in Tokamaks

Hogun Jhang[1], S. S. Kim[1], P. H. Diamond[1,2]

[1] WCI Center for Fusion Theory, NFRI, Korea
[2] CMTFO and CASS, UCSD, USA

6th Korean Astrophysics Workshop (2011. 11. 15-19, 포항)
Outline

- Motivating issues

- Methodology: Global flux-driven gyrofluid simulations

- Intrinsic rotation in ITB
 - Characteristics
 - Scaling
 - Phenomenology: Hysteresis

- Formation and back transition of internal transport barrier (ITB)
 - Role of intrinsic rotation & parallel shear flow instability (PSFI) in ITB dynamics
 - Cross interactions
Motivating issues and questions

● Intrinsic rotation (self-acceleration) in ITB:
 - ITER:
 - Low-torque environment
 - Advanced steady state operation will require ITB plasmas
 - Limited power available to access H-mode
 - Characteristics of intrinsic rotation in ITBs? Scaling?
 - Hysteresis happens?
 - Both interesting and useful

● ITB dynamics:
 - Intrinsic rotation closely coupled in ITB evolution
 - Mean flow shear & Reynolds stress are key players in ITB dynamics.
 - Questions:
 - What drives the Reynolds stress change? Parallel flow shear instability (PSFI)?
 - What is the role of momentum transport/transfer in ITB dynamics?
Tokamak: a leading candidate for magnetic fusion

- Tokamak plasma confinement is realized by the JXB force (gravitational force in the Sun) against pressure → Plasma current required

\[q = \frac{rB_{tor}}{RB_{pol}} \]

\[q = \text{field line pitch} = \frac{\Delta \phi}{2\pi} \]
Tokamak Turbulence and Transport

- Strongly magnetized quasi-2D ($k_\parallel \ll k_\perp$) turbulence as in geostrophic flow (Lorentz ↔ Coriolis)
- Transport by fluctuating electric and magnetic fields → Directly connected to reactor size
- Mixing length/system size $\sim \rho_i/a \sim \rho_*$ ($\sim 10^{-3}$ ITER)
 - Mean transport flux is diffusive $D = D_{GB} = D_B \rho_*$
- Meso-scale structure formation → Self-regulation by ZF, ExB staircase, …
- Scale invariant extended, transport events happen as in SOC.
Numerical model

- Three-field gyrofluid equations with electrostatic ion temperature gradient (ITG) turbulence

\[
\begin{align*}
(d_t^E - D_c - D_{\text{neo}})\Omega &= -n\nabla \parallel V_\parallel + n(V_E + V_p) \cdot (\kappa + \nabla \ln B) + nV_p \cdot \nabla \left(\frac{n_1 - \Omega}{n}\right) - d_t^E n_{eq} \\
(d_t^E - D_c)\dot{V}_\parallel &= -\frac{e}{m} \nabla \parallel \varphi - \frac{1}{mn} \nabla \parallel p \\
(d_t^E - D_c - D_{\text{glf}})p &= \frac{5}{3} pV_T \cdot (\kappa + \nabla \ln B) + \frac{5}{3} Td_t^E n + S_p
\end{align*}
\]

Vorticity

Parallel flow

Pressure

\[
\begin{align*}
d_t^E &= \frac{\partial}{\partial t} + V_E \cdot \nabla, \quad V_T = \frac{1}{m\omega_c} b \times \nabla T, \quad \Omega = n_1 - \frac{nc}{\omega_c B} \nabla^2 \phi, \quad n_i = n_{eq} \frac{e\phi}{T_e} \\
D_{\text{neo}}\Omega &= -\mu_{\text{neo}} \left(\Omega_{\text{eq}} - \Omega_{\text{neo}}\right), \quad \Omega_{\text{neo}} = \frac{n_{eq}c}{B\omega_c r} \frac{1}{\sigma} \left[\alpha_{\text{neo}} \frac{T_{eq}}{en_{eq}} \frac{\partial n_{eq}}{\partial r} + \left(1 - \alpha_{\text{neo}}\right) \frac{1}{en_{eq}} \frac{\partial p_{eq}}{\partial r} + \frac{B}{c qR} V_{\parallel eq}\right] \\
D_c F &= \mu_1 \nabla^2 \parallel F + \mu_2 \nabla^4 \parallel F + \mu_3 \nabla^2 \parallel^2 F, \quad D_{\text{glf}} p = -\frac{8T_{eq}}{\pi m} \nabla \parallel p_1
\end{align*}
\]
Simulation features

- **Global gyrofluid simulations** using the TRB code [Garbet et. al. PoP’01, Kim et. al. NF’11]

 - **Electrostatic ITG turbulence** with heat and momentum sources
 - **Global, flux-driven, self-consistently evolving ion temperature/flow profiles**
 - Fix q-profile & electron density/temperature profiles
 - **Only resonant modes are retained**
 - **No-slip** boundary condition on V_{\parallel}

[Graphs and data plots showing heat flux vs. $-\nabla T_i$.]
Intrinsic rotation (self-acceleration) happens

- Strong ($M_{th} \sim 0.1-0.2$, $|V_{ITB}| >> |V_L|$) co-current rotation is generated in heat flux driven ITB plasmas with reversed magnetic shear.
- The flow is intrinsic rotation generated via residual stress.

Ion temperature vs. r/a

V_\parallel vs. r/a
Formation of intrinsic rotation

- Intrinsic rotation is generated near **ITB head** and, initially, propagates into the core.
- Reynolds stress $\left\langle \tilde{v}_r \tilde{v}_\parallel \right\rangle < 0$, because of large **inward** residual stress.

![Diagram showing V_{\parallel} evolution during initial phase](image)

\[V_{\parallel} \text{ evolution during initial phase} \]

- Diffusive part
- Reynolds stress
- Residual stress

![Graph showing r/a vs. V_{\parallel}](image)

Graph showing r/a vs. $\langle \tilde{v}_r \tilde{v}_\parallel \rangle$ and $\rho_{\parallel} c_{\parallel 0}^2$ with dips indicating:
- Diffusive part
- Reynolds stress
- Residual stress
Intrinsic rotation correlates with \[\left< V_E' \frac{\partial |\tilde{\phi}|^2}{\partial r} \right> \]

- The position of **maximum intrinsic rotation** coincides with the position of maximal \[\left< V_E' \frac{\partial |\tilde{\phi}|^2}{\partial r} \right> \]

\[\Pi^{RS}_{r||} \sim V_E' |\tilde{\phi}|^2 \Rightarrow \nabla \cdot \Pi^{RS}_{r||} = \tau_{\text{int}} \sim V_E' \frac{\partial |\tilde{\phi}|^2}{\partial r} \]

~ position of maximal intrinsic torque
New regime of $V_{||}(0)$ vs ∇T_i scaling is found

- Linear $V_{||}(0)$ vs. $-\nabla T_i$ enters roll-over for $\chi_{i,turb} \lesssim \chi_{i,neo}$ (strong turbulence suppression in ITB) → Ultimate limitation on intrinsic rotation?

- Why? There are intermediate states between “active” and “fully suppressed” turbulent states determined by residual heat and momentum transport in barrier

$$Pr_{neo} = \frac{\chi_{\phi,neo}}{\chi_{i,neo}}$$

$$\nabla V_{\phi} \sim \frac{I \gamma_E^\alpha}{Q_i} \left(\frac{Q_i}{\chi_{i,t} 1 + \hat{\chi}_i} \right)^\beta \frac{\chi_{i,t} 1 + \hat{\chi}_i}{\chi_{\phi,t} 1 + \hat{\chi}_\phi}$$
Power ramp simulations reveal ITB dynamics

- Long time power ramp simulations show
 - Both heat and momentum transport barriers are self-organized
 - **Hysteresis** happens first-order phase transition
 - Reynolds stress generated **intrinsic rotation** is crucial to ITB dynamics.
Relative hysteresis between ∇T_i & ∇V_\parallel

- Relatively stronger hysteresis of intrinsic rotation over temperature gradient is observed → **Recovers** features of recent experimental observation in LHD [K. Ida et. al., NF 50 (2010) 064007]

- **Predict** that residual transport (Pr_{neo}) governs strength of relative hysteresis → $\Delta(\nabla V_\parallel)$ decreases as Pr_{neo} increases.
ExB shearing rate closely tracks $\nabla V_{||}$ at q_{min} position → similar trend observed at Alcator C-Mod [Fiore et.al. Nucl. Fusion 2010]

- Forward transition occurs when mean flow shear develops.
Several positions important in ITB dynamics

- **Four radial positions** are found to be important in ITB dynamics:
 - $r=0.57$ (ITB shoulder), $r=0.6$ (q_{min}), $r=0.61$ (ITB foot), $r=0.63$ (most unstable)
- Physical quantities at these positions are **coupled** to each other.
Parallel shear flow instability & momentum redistribution

- Several peaks in $<\delta V_{||}^2>$ observed when $\gamma_E < \gamma_{\text{lin}} \rightarrow$ excitation of PSFI
- PSFI onset is followed by Reynolds stress change \rightarrow momentum redistribution.
- Forward transition occurs during $\nabla V_{||}$ relaxation induced by PSFI.
Cross interactions important at q_{min} position

- **Resonant modes with same rational q appear in pairs.** Cross interactions between them may play an important role in ITB dynamics near q_{min}.

$$Q = \frac{3}{2} \langle \tilde{p}_l \tilde{V}_r \rangle = \frac{3}{2} \left[\langle \tilde{p}_{li} \tilde{V}_{ri} \rangle + \langle \tilde{p}_{r2} \tilde{V}_{r2} \rangle \right]$$

- **Cross phases** between them are down-shifted along with growth of γ_E during forward transition while reverse process prevails in back transition.
Negative feedback in back transition

- ExB shearing rate causes negative feedback in cross phase,
 \[\alpha = \frac{\langle \tilde{v}_r \tilde{T}_i \rangle}{\sqrt{\langle \tilde{v}_r^2 \rangle \langle \tilde{T}_r^2 \rangle}} \]
- \(V_{\text{ExB}} \) shear collapse starts from the ITB foot position and propagates into the ITB head

Spatio-temporal evolution of \(\left(\frac{c_{s0}}{a} \right) \)

E×B shearing rate and cross phase

Back transition
Splitting of ∇V_\parallel observed

- At back transition, ∇V_\parallel splits into two sections → local flattening of ∇V_\parallel within ITB region
- Flow evolution simultaneous with ExB shear

Spatio-temporal evolution of $-\nabla V_\parallel / a$

V_\parallel before and after back transition
Reynolds stress bursts & back transition

- Reynolds stress bursts (RSBs) appear after PSFI onset.
- During RSBs prior to back transition, momentum flux changes its direction from inward to outward, accompanied with axial flow decrease. \(\rightarrow\) similar to MTE [Osborne et.al. NF’95]
- Outward RSBs \(\rightarrow\) local flattening of \(V_\parallel\) at \(q_{\text{min}}\) \(\rightarrow\) triggers back transition
ITB dynamics

- A detailed analysis reveals mechanisms for **ITB formation** and **back transition**:
 - **Intrinsic rotation** dynamics are strongly coupled to ITB evolution.
 - **Parallel shear flow instability** is a hidden player governing intrinsic rotation.
Conclusions

- Robust intrinsic co-rotation with \(0.1 < M_{th} < 0.2 \) found in RS ITB from global gyrofluid simulations of ITG turbulence.

- \(V_{||}(0) \) vs \(\nabla T_i \) shows a roll-over at the point of strong turbulence suppression → Indication of saturation in the Rice scaling trend and of limit on intrinsic rotation

- Open-loop hysteresis in \(Q \) vs. \(\nabla T_i \) discovered and correlated with Nusselt number. Relative hysteresis between \(\nabla T_i \) and \(\nabla V_{||} \) noted to correlate with \(Pr_{neo} \)

- Intrinsic rotation dynamics is strongly coupled to ITB evolution.

- Onset of parallel shear flow instability (PSFI) and resulting momentum redistribution is a hidden player in ITB dynamics.

- Cross interactions between inner and outer modes at \(q_{min} \) position may be important in dynamics of ITB with reversed magnetic shear → Role of non-resonant modes are under study.

- Outward Reynolds stress burst (RSB) appears during PSFI and results in the reduction of both mean and zonal flow shears, which triggers back transition.