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dynamics
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Motivating issues and questions

® Intrinsic rotation (self-acceleration) in ITB:

> ITER:
= Low-torque environment
= Advanced steady state operation will require ITB plasmas
» Limited power available to access H-mode

» Characteristics of intrinsic rotation in ITBs? Scaling?

» Hysteresis happens?

» Both interesting and useful

® ITB dynamics:
» Intrinsic rotation closely coupled in ITB evolution
» Mean flow shear & Reynolds stress are key players in ITB dynamics.
» Questions:

— What drives the Reynolds stress change? Parallel flow shear instability
(PSFI)?
— What is the role of momentum transport/transfer in ITB dynamics?
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Tokamak: a leading candidate for magnetic fusion

® Tokamak plasma confinement is realized by the JXB force (gravitational
force in the Sun) against pressure - Plasma current required
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Tokamak Turbulence and Transport

Strongly magnetized quasi-2D (k, <<k, ) turbulence as in geostrophic flow
(Lorentz < Coriolis)

Transport by fluctuating electric and magnetic fields = Directly connected to
reactor size

Mixing length/system size ~ p,/a ~ p. (~ 10 ITER)

v Mean transport flux is diffusive D = Dgg = Dg p-
Meso-scale structure formation - Self-regulation by ZF, ExB staircase, ...
Scale invariant extended, transport events happen as in SOC.

Turbulence drive: R/L,
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Numerical model

® Three-field gyrofiuid equations with electrostatic ion temperature
gradient (ITG) turbulence

Vorticity

Parallel flow

Pressure
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Simulation features

® Global gyrofluid simulations using the TRB code [Garbet et. al. PoP’01, Kim

et. al. NF’11]

v’ Electrostatic ITG turbulence with heat and momentum sources

v Global, flux-driven, self-consistently evolving ion temperature/flow profiles
v’ Fix g-profile & electron density/temperature profiles

v Only resonant modes are retained
v"No-slip boundary condition on Vv
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Intrinsic rotation (self-acceleration) happens

® Strong (M, ~ 0.1-0.2, |V,75| >>|V/|) co-current rotation is generated in heat flux

driven ITB plasmas with reversed magnetic shear

® The flow is intrinsic rotation generated via residual stress.
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Formation of intrinsic rotation

® |[ntrinsic rotation is generated near ITB head and, initially, propagates into

the core

® Reynolds stress <\7r\7“> < 0, because of large inward residual stress

V| evolution during initial phase
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Intrinsic rotation correlates with < aH >

® The position of maximum intrinsic rotation coincides with the position of
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New regime of V,(0) vs VT, scaling is found

® ~ Linear V(0) vs. -VT, enters roll-over for x;,» < X; neo (Strong turbulence

suppression in ITB) ‘ Ultimate limitation on intrinsic rotation?
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Power ramp simulations reveal ITB dynamics

® Long time power ramp simulations show
— Both heat and momentum transport barriers are self-organized
— Hysteresis happens mm first-order phase transition

— Reynolds stress generated intrinsic rotation is crucial to ITB dynamics.
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Relative hysteresis between VT, & VV,
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® Relatively stronger hysteresis of intrinsic rotation over temperature gradient is
observed — Recovers features of recent experimental observation in LHD
[K. Ida et. al., NF 50 (2010) 064007]

® Predict that residual transport (Pr,.,) governs strength of relative hysteresis
— A(VV,) decreases as Pr,,, increases.
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Coupling of intrinsic rotation to ITB dynamics

® ExB shearing rate closely tracks VV, at q,,;, position = similar trend observed
at Alcator C-Mod [Fiore et.al. Nucl. Fusion 2010]

® Forward transition occurs when mean flow shear develops.
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Several positions important in ITB dynamics

Four radial positions are found to be important in ITB dynamics:
r=0.57 (ITB shoulder), r=0.6 (q,,,), r=0.61 (ITB foot), r=0.63 (most unstable)

Physical quantities at these positions are coupled to each other.
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Parallel shear flow instability & momentum redistribution

® Several peaks in <3V 2> observed when yg< y;;,—> excitation of PSFI
® PSFI onset is followed by Reynolds stress change - momentum redistribution.
® Forward transition occurs during VV, relaxation induced by PSFI.

0.3¢

0.25¢

0.2¢

0.15+

0.1+

0.05

<5V

2>
II'p.e3

WV, | x0.1

16




Cross interactions important at q,,;, position

® Resonant modes with same rational g appear in pairs. Cross interactions
between them may play an important role in ITB dynamics near q,, -

~
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® Cross phases between them are down-shifted along with growth of vy, during
forward transition while reverse process prevails in back transition.
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Negative feedback in back transition

® ExB shearing rate causes negative feedback in cross phase, _

® V5 shear collapse starts from the ITB foot position and propagates into the ITB head
Spatio-temporal evolution)of (cso /a) E xB shearing rate and cross phase
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Splitting of VV, observed

® At back transition, VV” splits into two sections ‘ local flattening of VV” within ITB
region
® Flow evolution simultaneous with ExB shear
Spatio-temporal evolution of - V(Vw /a) V,, before and after back transition
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Reynolds stress bursts & back transition

® Reynolds stress bursts (RSBs) appear after PSFI onset.

® During RSBs prior to back transition, momentum flux changes its direction from inward to
outward, accompanied with axial flow decrease. - similar to MTE [Osborne et.al. NF’95]

® Outward RSBs - local flattening of V at q,.,,, = triggers back transition
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ITB dynamics

® A detailed analysis reveals mechanisms for ITB formation and back transition:

— Intrinsic rotation dynamics are strongly coupled to ITB evolution.

— Parallel shear flow instability is a hidden player governing intrinsic rotation.
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Conclusions

Robust intrinsic co-rotation with 0.7 <M,, < 0.2 found in RS ITB from global gyrofluid
simulations of ITG turbulence.

V|(0) vs — VT, shows a roll-over at the point of strong turbulence suppression -
Indication of saturation in the Rice scaling trend and of limit on intrinsic rotation

Open-loop hysteresis in Q vs. VT, discovered and correlated with Nusselt number.
Relative hysteresis between I’T;and V| noted to correlate with Pr,,

Intrinsic rotation dynamics is strongly coupled to ITB evolution.

Onset of parallel shear flow instability (PSFI) and resulting momentum redistribution is a

hidden player in ITB dynamics.

Cross interactions between inner and outer modes at q,,,;, position may be important in
dynamics of ITB with reversed magnetic shear - Role of non-resonant modes are under

study.

Outward Reynolds stress burst (RSB) appears during PSFI and results in the reduction

of both mean and zonal flow shears, which triggers back transition.
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