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Outline
l Motivating issues

l Methodology: Global flux-driven gyrofluid simulations

l Intrinsic rotation in ITB
– Characteristics 
– Scaling
– Phenomenology: Hysteresis

l Formation and back transition of internal transport barrier 
(ITB)
– Role of intrinsic rotation & parallel shear flow instability (PSFI) in ITB 

dynamics
– Cross interactions
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Motivating issues and questions
l Intrinsic rotation (self-acceleration) in ITB:

Ø ITER: 
§ Low-torque environment
§ Advanced  steady state operation will require ITB plasmas
§ Limited power available to access H-mode

Ø Characteristics of intrinsic rotation in ITBs? Scaling?
Ø Hysteresis happens?
Ø Both interesting and useful

l ITB dynamics:
Ø Intrinsic rotation closely coupled in ITB evolution
Ø Mean flow shear & Reynolds stress are key players in ITB dynamics.
Ø Questions:

– What drives the Reynolds stress change? Parallel flow shear instability 
(PSFI)?

– What is the role of momentum transport/transfer in ITB dynamics?
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l Tokamak plasma confinement is realized by the JXB force (gravitational 
force in the Sun) against pressure à Plasma current required

q =field line pitch =Df/2p

Tokamak: a leading candidate for magnetic fusion

ITER
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Tokamak Turbulence and Transport 

l Strongly magnetized quasi-2D (k|| << k⊥) turbulence as in geostrophic flow 
(Lorentz ↔ Coriolis)

l Transport by fluctuating electric and magnetic fields à Directly connected to 
reactor size

l Mixing length/system size ~ ρi /a ~ ρ* (~ 10-3 ITER)
ü Mean transport flux is diffusive D = DGB = DB ρ* 

l Meso-scale structure formation à Self-regulation by ZF, ExB staircase, …
l Scale invariant extended, transport events happen as in SOC.
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Numerical model
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l Three-field gyrofluid equations with electrostatic ion temperature 
gradient (ITG) turbulence
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Simulation features
l Global gyrofluid simulations using the TRB code [Garbet et. al. PoP’01, Kim 

et. al. NF’11]
ü Electrostatic ITG turbulence with heat and momentum sources
ü Global, flux-driven, self-consistently evolving ion temperature/flow profiles
ü Fix q-profile & electron density/temperature profiles 
ü Only resonant modes are retained
ü No-slip boundary condition on V||

Heat flux vs. -▽Ti
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Intrinsic rotation (self-acceleration) happens

l Strong (Mth ~ 0.1-0.2, |VITB | >> |VL|) co-current rotation is generated in heat flux 
driven ITB plasmas with reversed magnetic shear

l The flow is intrinsic rotation generated via residual stress.

V|| vs. r/aIon temperature vs. r/a

L-mode L-mode
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Formation of intrinsic rotation
l Intrinsic rotation is generated near ITB head and, initially, propagates into 

the core
l Reynolds stress            < 0, because of large inward residual stress 

Diffusive part

Residual stress

Reynolds stress

r/a

V|| evolution during initial phase

||rv v% %
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Intrinsic rotation correlates with 
l The position of maximum intrinsic rotation coincides with the position of 

maximal

~ position of maximal intrinsic torque
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New regime of V||(0) vs ∇Ti scaling is found

l ~ Linear V||(0) vs. -∇Ti enters roll-over for χi,turb < χi,neo (strong turbulence 

suppression in ITB)            Ultimate limitation on intrinsic rotation?

l Why? There are intermediate 
states between “active” and 
“fully suppressed” turbulent 
states           determined by 
residual heat and momentum 
transport in barrier

Prneo = cf,neo /ci,neo
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Power ramp simulations reveal ITB dynamics 
l Long time power ramp simulations show

– Both heat and momentum transport barriers are self-organized

– Hysteresis happens        first-order phase transition 

– Reynolds stress generated intrinsic rotation is crucial to ITB dynamics.
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Relative hysteresis between ∇Ti & ∇V||

l Relatively stronger hysteresis of intrinsic rotation over temperature gradient is 
observed → Recovers features of recent experimental observation in LHD       
[K. Ida et. al., NF 50 (2010) 064007]

l Predict that residual transport (Prneo) governs strength of relative hysteresis                      
→  Δ(∇V||) decreases as Prneo increases.
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l ExB shearing rate closely tracks ÑV|| at qmin position à similar trend observed 
at Alcator C-Mod [Fiore et.al. Nucl. Fusion 2010]

l Forward transition occurs when mean flow shear develops.

Coupling of intrinsic rotation to ITB dynamics

Forward transition Back transition

Before During After ITB formation
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r=0.57  0.6  0.61  0.63

l Four radial positions are found to be important in ITB dynamics:     
r=0.57 (ITB shoulder),   r=0.6 (qmin),   r=0.61 (ITB foot),   r=0.63 (most unstable)

l Physical quantities at these positions are coupled to each other.

Several positions important in ITB dynamics 

r=0.57 0.63
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Parallel shear flow instability & momentum redistribution

r=0.57

l Several peaks in <dV||
2> observed when gE< glin excitation of PSFI  

l PSFI onset is followed by Reynolds stress change à momentum redistribution. 
l Forward transition occurs during ÑV|| relaxation induced by PSFI.

Forward transition
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l Resonant modes with same rational q appear in pairs. Cross interactions 
between them may play an important role in ITB dynamics near qmin .

l Cross phases between them are down-shifted along with growth of  gE during 
forward transition while reverse process prevails in back transition.

Cross interactions important at qmin position
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l ExB shearing rate causes negative feedback in cross phase,

l VExB shear collapse starts from the ITB foot position and propagates into the ITB head

Spatio-temporal evolution of ( )acsE /  0g

Negative feedback in back transition
2 2

r i r rv T v Ta = < > < >< >% %% %

Back transition

E×B  shearing rate and cross phase
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Splitting of ∇V|| observed
l At back transition, ∇V|| splits  into two sections         local flattening of ∇V|| within ITB 

region
l Flow evolution simultaneous with ExB shear

Spatio-temporal evolution of -ÑV|| V|| before and after back transition

∇V||
splits

( )acs /0
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Reynolds stress bursts & back transition
l Reynolds stress bursts (RSBs) appear after PSFI onset.
l During RSBs prior to back transition, momentum flux changes its direction from inward to 

outward, accompanied with axial flow decrease. à similar to MTE [Osborne et.al. NF’95] 
l Outward RSBs à local flattening of V|| at qmin à triggers back transition

Back transition
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ITB dynamics
l A detailed analysis reveals mechanisms for ITB formation and back transition:

– Intrinsic rotation dynamics are strongly coupled to ITB evolution. 

– Parallel shear flow instability is a hidden player governing intrinsic rotation.

ITB formation mechanism ITB back transition mechanism
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l Robust intrinsic co-rotation with 0.1 < Mth < 0.2  found in RS ITB  from global gyrofluid 
simulations of ITG turbulence. 

l V||(0) vs –∇Ti shows a roll-over at the point of  strong turbulence suppression à
Indication of saturation in the Rice scaling trend and of limit on intrinsic rotation

l Open-loop hysteresis in Q vs. ∇Ti discovered  and correlated with Nusselt number.  
Relative hysteresis between ∇Ti and ∇V|| noted to correlate with Prneo

l Intrinsic rotation dynamics is strongly coupled to ITB evolution.

l Onset of parallel shear flow instability (PSFI) and resulting momentum redistribution is a 

hidden player in ITB dynamics. 

l Cross interactions between inner and outer modes at qmin position may be important in 

dynamics of ITB with reversed magnetic shear à Role of non-resonant modes are under 

study.

l Outward Reynolds stress burst (RSB) appears during PSFI and results in the reduction 

of both mean and zonal flow shears, which triggers back transition. 

Conclusions 


