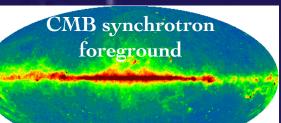
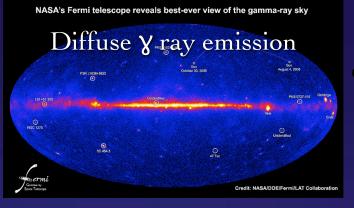
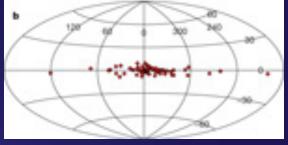
Interaction among cosmic Rays, waves and large scale turbulence

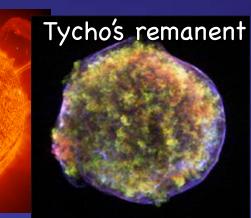

Huirong Yan


Kavli Institute of Astronomy & Astrophysics, Peking U

Collaboration: A. Lazarian (UW-Madison), R. Schlickeiser (U Ruhr-Bochum)


Importance

Propagation:



liffuse Galactic 511 keV radiation

Acceleration:

Stochastic acceleration by turbulence

Scattering at shock front for 1st order Fermi

Gamma ray burst Solar Flare

BIG SIMULATION ITSELF IS NOT ADEQUATE

big numerical simulations fit results due to the existence of "knobs" of free parameters.

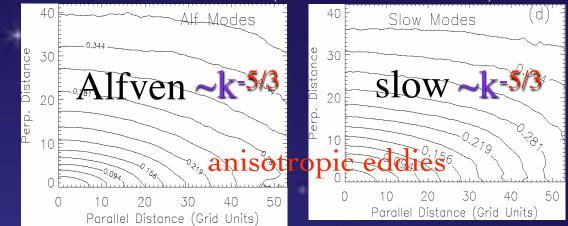
Self-consistent picture can be only achieved on the basis of theory with solid theoretical foundations and numerically tested.

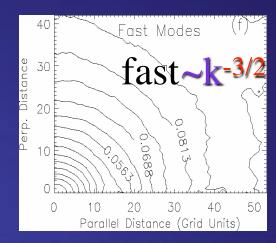
Overview

Brief review of direct interaction w. large scale turbulence

scattering through self-generated small scale waves

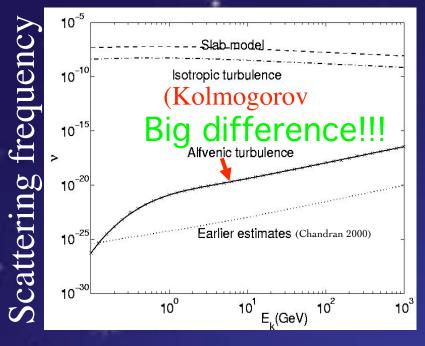
Solution for the modeling γ ray emission near SNRs from the point of view of instability-turbulence interaction

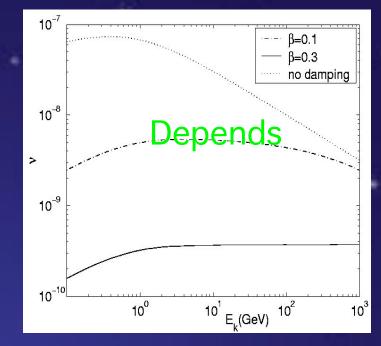

(no time to discuss, talk to me if interested)


Numerically tested models for MHD turbulence

B

Equal velocity correlation contour (Cho & Lazarian 02)




Compressible Turbulence dominates CR scattering by gyroresonance

Alfven modes

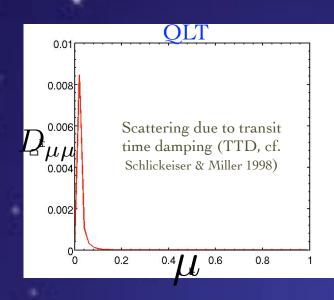
eddié

fast modes

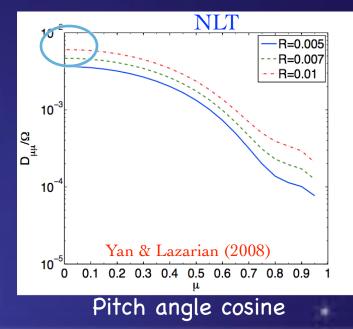
The often adopted Alfven modes are useless. Fast modes dominate CR scattering (Yan & Lazarian 02,04).

Compressible turbulence has another substantial contribution from TTD in nonlinear theory

On large scale, unperturbed orbit assumption in QLT fails due to conservation of adiabatic invariant v_{\perp}^2/B


(Volk 75).

varying $v_{\perp} = varying v_{\parallel}$


-∆**V_{II} t**

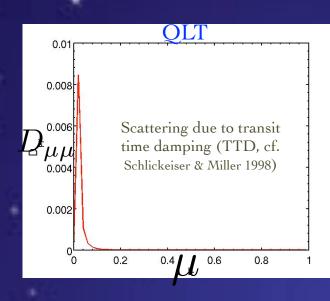
vµt

∆**V_{II}** t

Broadened resonance

Compressible turbulence has another substantial contribution from TTD in nonlinear theory

On large scale, unperturbed orbit assumption in QLT fails due to conservation of adiabatic invariant v_{\perp}^2/B


(Volk 75).

varying $v_{\perp} = varying v_{\parallel}$

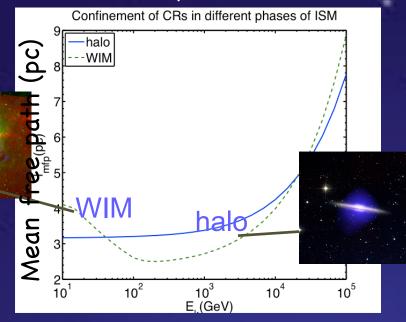
-∆**V_{II} t**

vut

∆**V_{II} t**

Broadened resonance

NLT R=0.01 x 10 R=0.005 R=0.007 R=0.01 , /Ω Test particle Analytical Simulation 0.05 0.1 0.15 0.2 IU Yan & Lazarian (2008) 10 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 0 Pitch angle cosine


Nonlinear pitch angle diffusion

- NLT confirms the QLT result that gyroresonance with Alfvenic turbulence is negligible.
- At large pitch angle (including 90°), the scattering is due to transit time damping.
- At small pitch angle, gyroresonance with fast modes dominates.

CR Transport varies from place to place!

CR Transport in ISM

Kinetic energy

÷

CR Transport varies from place to place!

Kinetic energy

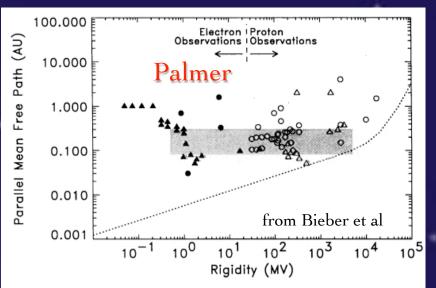
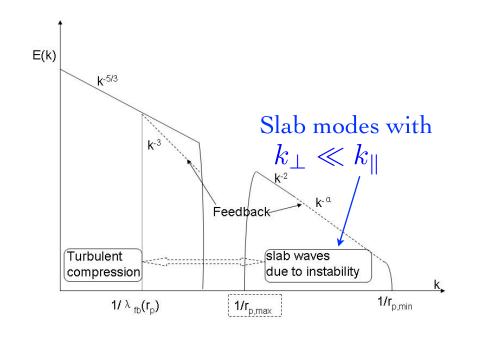
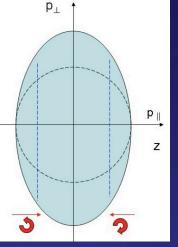



FIG. 1.—Cosmic-ray parallel mean free path vs. particle rigidity. Filled and open symbols denote results derived from electron and proton observations, respectively. See text for source references. Circles and upward-pointing triangles denote actual values and lower- limit values, respectively. The shaded band is the observational consensus enunciated by Palmer (1982). The dotted line represents the prediction of standard quasi-linear theory for magnetostatic, dissipationless turbulence with slab geometry (Jokipii 1966).


Wave generation through turbulence compression

Lazarian & Beresnyak (2006), Yan & Lazarian (2011)

GYRORESONANCE INSTABILITY

Turbulence compression $\beta \cong Pgas/P_{mag} < 1$, fast modes (isotropic cascade + anisotropic damping) $\beta > 1$ slow modes (GS95)

Scattering by instability generated slab wave

Wave Growth is limited by Nonlinear Suppression!

Scattering by growing waves

Simple estimates:

$$\frac{dA}{dt} \simeq \nu A = \frac{1}{W_{\parallel}} \left(\frac{dW_{\perp}}{dt} - \frac{W_{\perp}}{W_{\parallel}} \frac{dW_{\parallel}}{dt} \right) \sim \Gamma_{gr} \epsilon_N / \beta_{CR},$$

By balancing it with the rate of increase due to turbulence compression $\frac{1}{B} \frac{dB}{dt}$, we can get

Bottle-neck of growth due to energy constraint:

$$\epsilon_{N,max} \sim rac{v_A}{L_{inj}\Gamma_{gr}}$$

 $\epsilon_N \sim \frac{\beta_{CR}\omega\delta v}{\Gamma_{ar}v_A}, \ \lambda \simeq r_p/\epsilon_N$

* Anisotropy cannot reach δv/v_A, the value predicted earlier (Lazarian & Beresnyak 2006), and the actual growth is slower and smaller amplitude due to nonlinear suppression (Yan &Lazarian 2011).

Scattering by growing waves

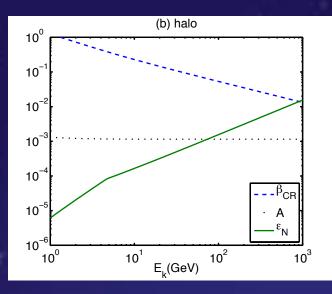
$$\begin{aligned} & \operatorname{Sin} \quad \frac{\partial W_{\perp}}{\partial t} = 2q < \mathbf{E}_{1} \cdot \int \mathbf{v} f_{1} d^{3} p > + \frac{2q}{c} < \mathbf{B}_{1} \cdot \int d^{3} p \mathbf{v}_{\perp} \times \mathbf{v} f_{1} >, \\ & \frac{\partial W_{\parallel}}{\partial t} = -\frac{2q}{c} < \mathbf{B}_{1} \cdot \int d^{3} p \mathbf{v}_{\perp} \times \mathbf{v} f_{1} >, \end{aligned} \tag{21}$$

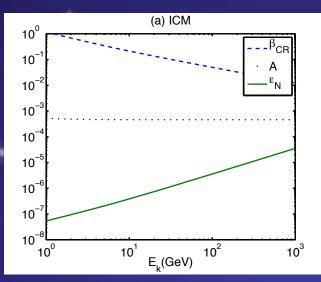
By balancing it with the rate of increase due to turbulence compression $\frac{1}{B} \frac{dB}{dt}$, we can get $\epsilon_N \sim \frac{\beta_{CR} \omega \delta v}{\Gamma_{ar} v_A}, \ \lambda \simeq r_p/\epsilon_N$

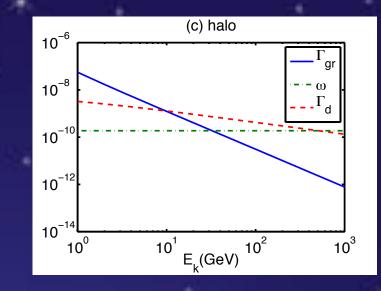
Bottle-neck of growth due to energy constraint:

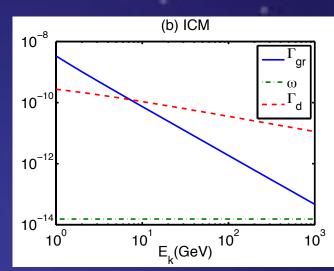
$$\epsilon_{N,max} \sim rac{v_A}{L_{inj}\Gamma_{gr}}$$

* Anisotropy cannot reach δv/v_A, the value predicted earlier (Lazarian & Beresnyak 2006), and the actual growth is slower and smaller amplitude due to nonlinear suppression (Yan &Lazarian 2011).

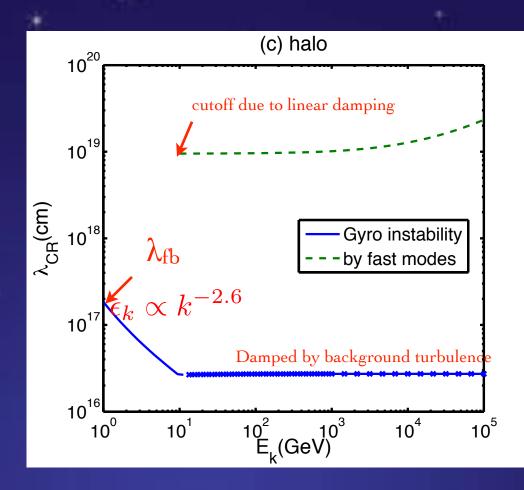

Growth of instability is limited by background turbulence

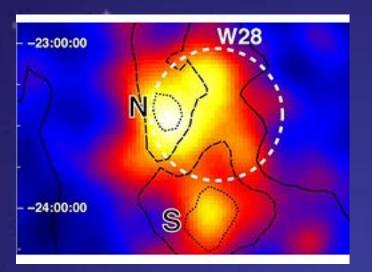

1. MHD turbulence can suppress growth of instability (Yan & Lazarian 2002).


2. Calculations for weak case ($\delta B < B$): With background compressible turbulence (*Yan & Lazarian 2004*): $E_{max} \approx 1.5 \quad 10^{-9} [n_p^{-1}(V_A/V)^{0.5}(Lc\Omega_0/V^2)^{0.5}]^{1/1.1}E_0$ This gives $E_{max} \approx 20$ GeV for HIM.

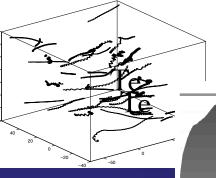

This is similar to the estimate obtained with background Alfvenic turbulence (*Farmer & Goldreich 2004*).

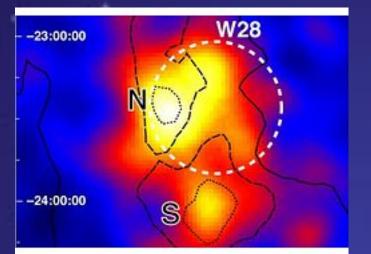
GYRORESONANCE INSTABILTIY OF COSMIC RAYS





DOMAINS FOR DIFFERENT REGIMES OF CR SCATTERING


GAMMA RAY EMISSION NEAR SNR

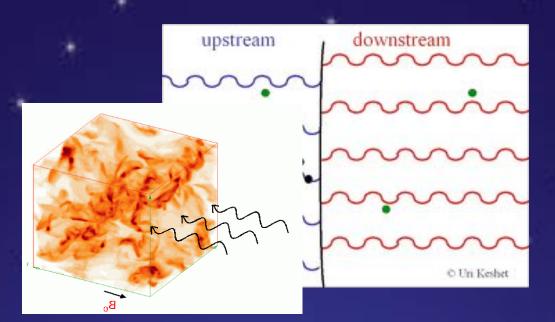


GAMMA RAY EMISSION NEAR SNR

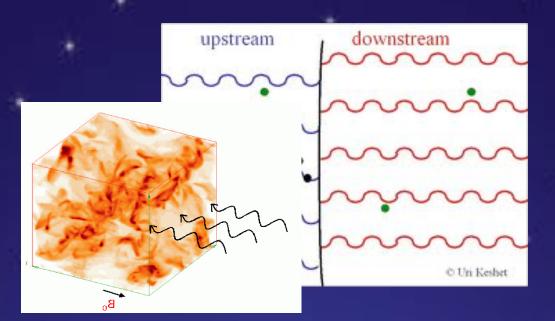
molecular

OFTEN ADOPTED ASSUMPTIONS

Phenomenological power law evolution of the maximum energy accelerated at a given epoch.


$$p_{max} = p_{knee} (t/t_{sed})^{-c}$$

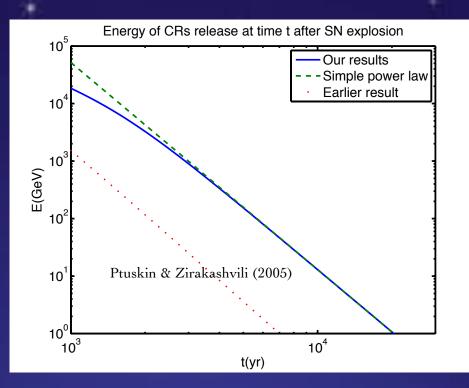
Bohm diffusion is assumed.


Speculated enhanced scattering. Origin? No physical justification.

Earlier work, e.g., Fujita et al. (2009); Li & Chen (2010); Ohira (2011)

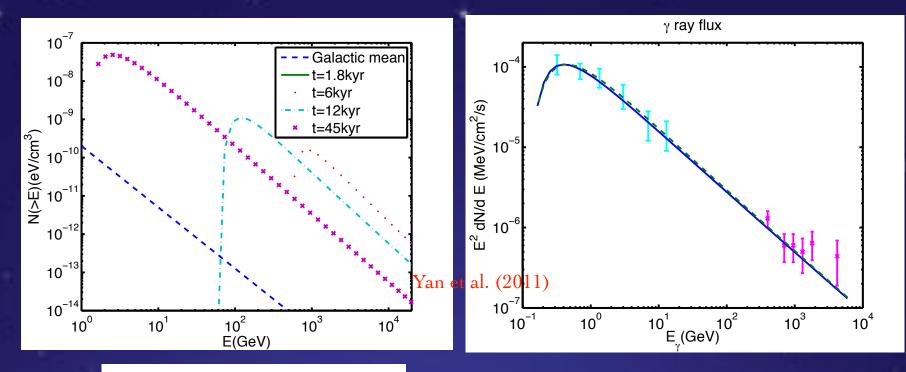
ACCELERATION IS LIMITED BY THE WAVE GROWTH AT THE SHOCK FRONT

ACCELERATION IS LIMITED BY THE WAVE GROWTH AT THE SHOCK FRONT

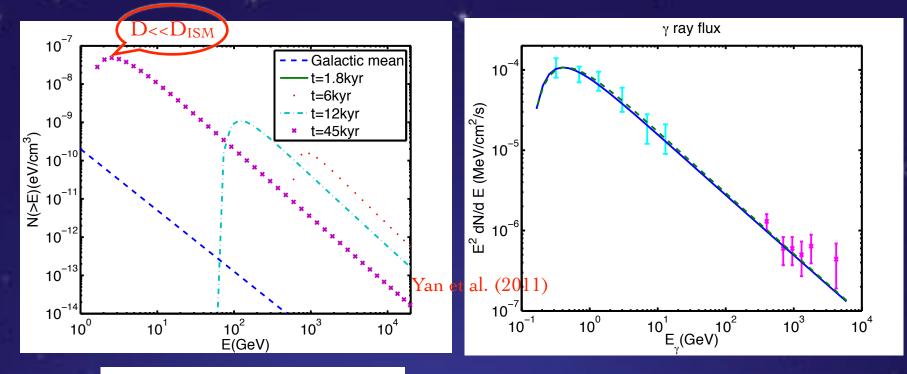


$$(U \pm v_A)\nabla W(k) = 2(\Gamma_{cr} - \Gamma_d)W(k)$$

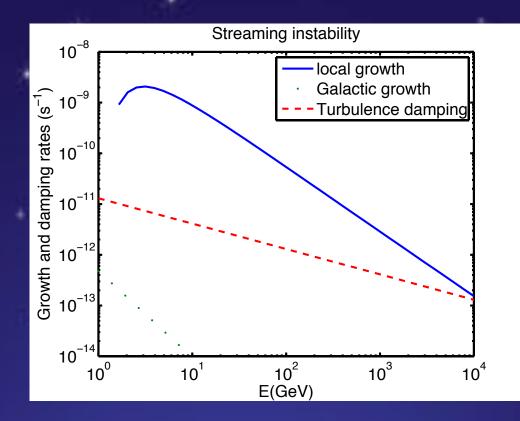
$$\Gamma_d = V_{LM} / \sqrt{L_M r_p}$$


for MHD turbulence with $k_{\perp} >> k_{\parallel}$

MAXIMUM ENERGY AT A GIVE EPOCH


Maximum energy accelerated at a given shock radius is higher than the case when the background turbulence is assumed isotropic.

ACCELERATED CR FLUX AND γ RAY EMISSION


 $F(E) \approx \frac{f(E)}{\pi^{3/2} R_d^3} \exp\left[-\left(\frac{r}{R_d}\right)^2\right]$

ACCELERATED CR FLUX AND γ RAY EMISSION

$$F(E) \approx \frac{f(E)}{\pi^{3/2} R_d^3} \exp\left[-\left(\frac{r}{R_d}\right)^2\right]$$

RESULT IS SELF-CONSISTENT!

Steaming instability due to increased CR flux is sufficient to overcome the damping by turbulence.

Summary

- **Compressible turbulence dominates the transport of CRs**, through both direct scattering and inducing gyroresonance instability.
- The growth of the instability is balanced by the feedback of the slab waves on the anisotropy of CRs.
- Small scale slab waves are generated in compressible turbulence by gyroresonance instability, dominating the scattering of low energy CRs (<100GeV).
 - The flux of CRs near SNRs is increased enough to create strong streaming instability that can overcome the damping by background turbulence for the energy range considered.
 - The enhanced scattering by the instability is enough to reproduce the observed gamma ray flux from molecular clouds. at the proximity of SNR.