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Predator-prey model describing interaction 
between turbulence and zonal flow 
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Simple model – predator-prey model [Diamond ’94 PRL] 
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Self-consistence is essential. 



Why simple models? 
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� Simple does not mean “Easy”, but “Essential.” 
� Of course, somehow INCORRECT 
� Correct in an adequate approximation or param

eter regime. 
� Stability analysis gives us profound insights. 
� Time scale of phase transition 
� Time scale of LH transition? 

� Comparison with experiments and/or simulation
 is essential. 



Experimental motivation 
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�  L-H threshold Power in low density region (typically lower than 3x1019m-3) 

�  I-phase as a transient phase between low and high confinement, i.e. LèIèH transition.  

�  Limit cycle oscillation in prior to the transition in TJ-II[Estrada ‘10 EPL], NSTX[Zweben ‘10 PoP], 
ASDEX Upgrade[Conway ‘11 PRL], EAST[Xu ‘11 PRL] 

�  Radial structure of mean flow shear in the  I-phase limit-cycle oscillation 
�  Dual shear layer in DIII-D [Schmitz, TTF ‘11] 

�  Poloidal rotation involving in the transition  process in JT-60U [Kamiya ‘10 PRL] 

[Schmitz, TTF ‘11] 

fluctuations in the radial electric field Er ’ !u?B appear
directly in the Doppler shift, while the Doppler peak
intensity SD is proportional to the turbulence level at the
probed k? [11]. The measurements reported here were
obtained with an X-mode 50–75 GHz tunable frequency
reflectometer with 20 MHz signal sampling, located below
the tokamak outer midplane [14].

GAMs are most clearly observed at low plasma densities
and high safety factors q [15] due to weaker collisional and
Landau damping [1]. Figure 1(a) shows a GAM existence
diagram in terms of net heating power Pnet versus central
line averaged plasma density !ne for Ohmic and L-mode
heated plasmas. GAMs are not observed in the H mode.
Overlaid are the predicted (dashed line) and experimen-
tally measured (curve) L-H power threshold showing two
branches; see [16] for details. The GAM appears as a
coherent peak in the fD ( ~Er) spectrum, cf. Fig. 5(a) in L
mode. Note the absence of coherent low frequency ZF
activity, either as a peak or broadening of the spectra
around zero frequency. The spectra continues to be flat
down to the lowest spectral resolution investigated (a few
tens of Hz).

From the low density L mode (edge !"
edge # 1) raising

either the heating power or the density causes the turbu-
lence to rise across the whole edge region and to begin
pulsating at around 2–4 kHz (sometimes with a slower
subpulse activity of a few hundred Hz) with an on-off
duty cycle of less than 50%. This intermediate state
(labeled I phase) is not transitory but can be maintained
for the entire discharge. Observations from many dis-
charges confirm that the L to I phase is a sharp transition
with a well-defined threshold, while the full H mode
appears to evolve more softly from the I phase. The
turbulence pulsing extends across the plasma edge into
the open flux surface scrape-off layer (SOL). Figure 2
shows an example close to the power or density threshold
where the discharge dithers between the L and I phases—
illustrated by the divertor tile shunt current (/ SOL flow).

The transition from continuous L-mode turbulence to puls-
ing is shown below in the Doppler reflectometer spectro-
gram Sðf; tÞ from just inside the Er minimum location at a
normalized poloidal flux radius "pol # 0:988. Below are
the corresponding (smoothed) traces of the u? velocity and
fluctuation level SD at the probed k? # 9:8 cm!1.
The u? and SD pulsing are synchronized and display all

the features of a limit-cycle behavior with a fast switching
between an enhanced and a reduced fluctuation state in less
than 1 #s, i.e., on the turbulence time scale. The GAM is
also still present, however, only during the enhanced tur-
bulence state. This is more clearly seen in Fig. 3 which
shows an expanded time trace of (a) the instantaneous Er

(100 ns resolution) plus (b) smoothed Er and turbulence
level SD traces over four pulses. The figure shows a se-
quence of events: (1) The turbulence rises between the
pulses, (2) reaches a critical threshold (marked by the
dashed lines) and triggers an exceedingly large GAM
oscillation (3) together with a turbulence driven mean
flow—indicated by the offset in the oscillation. [The
peak-to-peak GAM flow oscillation amplitude during the
pulse can exceed 100% of the mean flow—stronger than in
the preceding L mode. While earlier observations also
point towards a rTe (drive) threshold for the GAM onset
[15], it is possible that the GAM is also enhanced by the

shot

FIG. 1 (color online). (a) GAM existence plot in terms of Pnet

vs central line average density. (b) Edge radial electric field Er

profiles for L (PECH ¼ 0:35 MW) and I phase (1.1 MW)
shot 24 811, BT ¼ !2:3 T, Ip ¼ 0:8 MA, q95 # 4:5, !ne ¼ 3'
1019 m!3, Teo # 2:4 keV, and favorable lower X point.

shot

FIG. 2 (color online). (a) Time trace of divertor shunt current,
(b) expanded reflectometer spectrogram Sðf; tÞ—darker colors
for higher intensity, with (c) corresponding u? velocity and
fluctuation level SD, and (d) estimated mean and oscillatory
shearing rates and turbulence decorrelation rate $!1

c across the
L to I phase. BT ¼ !2:3 T, Ip ¼ 1:0 MA, q95 # 4, !ne ¼ 2:8'
1019 m!3, Teo # 3 keV, PECH ¼ 1:0 MW.

PRL 106, 065001 (2011) P HY S I CA L R EV I EW LE T T E R S
week ending

11 FEBRUARY 2011

065001-2

[Conway ‘11 PRL] 



Predator-prey system of Turbulence-
Zonal flow-Mean flow/profile gradient 
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turbulence 

Zonal flow Mean flow 

Mean flow=ExB shear flow sustained by global equilibrium 

Profile gradients 

Competition damp 

Heat source 

[E. Kim and Diamond ’03 PRL]  
 



Predator-prey model  
-- with competition between ZF-mean flow(MF) 
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Turbulence:  

Zonal Flow(ZF): 

pressure gradient ∇<P> 

•  The intermediate limit-cycle oscillation 
describes a transition time-scale as zonal 
flow damping (~ion collision time). 

2 predators 

1 prey 

 ε  

 VZF   ∇<P> 

V = dN 2Mean Flow equilibrium: 



Stability analysis of the 0D K.-D. model 
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dU

dt
= !! E

1 + "N4 − #"U , #16$

dN

dt
= q#t$ − #$ + %E$N . #17$

It is worthwhile to summarize here the important features of
this dynamical system. Note that some of them were identi-
fied in Refs. 25 and 26. Depending on the parameters, the
system given by Eqs. #15$–#17$ has up to the four fixed
points, as illustrated in Fig. 1 using a N−E projection. With
increasing q, the system typically #but not for all values of
other parameters and initial conditions$ evolves from what
we call an L-mode to a transient #intermediate$ oscillatory
T-mode, then to H-mode and finally to a quiescent H-mode
#or QH-mode$.

• the L-mode is characterized by

U = 0,
#18$

E = EL % NL#1 − NL
3$ & 0,

where NL is the smaller of the two positive roots of the
equation

N2#1 − N3$ +
$

%
N =

q

%
. #19$

Here, q is assumed to be constant or slowly varying in
time.

• The transient mode fixed point #T-mode$ can be conve-
niently described by the following sequence of relations:

ET = ##1 + "NT
4$ , #20$

UT = NT#1 − NT
3$ − ET, #21$

NT =
q

$ + %ET
. #22$

• The H-mode is given by EH%NH#1−NH
3 $, where NH is the

larger root of Eq. #19$.
• Quiescent H-mode #QH-mode$ establishes when the heat

balance curve &Eq. #22$' intersects the N axis #E=U=0$.
Obviously, NQH=q /$ at this fixed point &Eqs. #15$ and
#16$'.

Note that the L- and H-modes share the property U=0,
but E!0. The T-mode is characterized by both E!0 and
U!0, while in the QH-mode, U=E=0. For both H- and
QH-modes to exist, it is necessary that NQH=q /$&1, which
is also the stability condition for the QH-mode.

Figure 1 shows the arrangement of the fixed points for
one particular set of parameters when all the fixed points of
the system exist. Clearly, some of the fixed points may dis-
appear while parameters change. For example, the H-mode
obviously fails to exist when QH-mode on the N axis goes
below unity. As we noted, for the H-mode to exist, it is
necessary that q /$&1. Note that if the latter is not the case,
then also the QH mode is unstable, according to Eq. #15$. On
the other hand, for H- and L-modes to coexist, the heating
parameter should not exceed a limit qmax, 1'q /$'qmax /$.
It can be obtained by assuming that the curves given by Eqs.
#21$ and #22$ touch each other and the L- and H-modes
merge into one. The value of pressure gradient at this point is
determined by

N =
2

3%
!($2 +

15
4

%q − $" .

The exact analytic expression for qmax is cumbersome and
we do not reproduce it here. A simple upper bound to q,
which can be obtained from the requirement N'1, is
q' #4$+3%$ /5.

As it was already mentioned, we consider q as the main
control parameter and we generally follow the bifurcation
sequence as q increases. Note that Refs. 25 and 26 studied
the bifurcation of the system given by Eqs. #12$–#14$ by
making q#t$ slowly growing in time from zero to some final
value sufficient to reach the QH-mode in each run, so that all
the transitions occur consequently on much shorter time
scales. Here we study the reduced system given by Eqs.
#15$–#17$ using two different approaches. The first approach
is to treat q as a fixed control parameter and look for the
fixed points and limit cycles that may branch off from some
of these fixed points. In particular, we study the Hopf bifur-
cation of the T-mode equilibrium into a limit cycle on a
center manifold of the system. The center manifold here is a
two-dimensional attractor of our three-dimensional system
formed by eigenspace spanned on the two purely imaginary
complex conjugated eigenvalues. The third eigenvalue has
Re ('0, which ensures local attraction to the center mani-
fold. We also consider stability of equilibria and the transi-
tion from the limit cycle to a next equilibrium. This eluci-
dates conditions under which the transitions to higher modes

0 0.5 1
N

0

0.5

E

L

T

H

QH

FIG. 1. Singular points of the dynamical system given by Eqs. #15$–#17$.
The equilibria are shown as the intersection points of the three curves,
each of which nils one of the three right hand sides of the system in the
U=0 projection. The curve connecting the origin with N=1 is given by
E=N#1−N3$, the rising curve is given by E=##1+"N4$, while the falling
curve is from the heat balance N=q#$+%E$−1. The latter also intersects the
E=0 axis at the stable equilibrium point QH #see text$. The parameters are
!=19, #=0.12, $=0.55, %=0.6, "=1.7, and q=0.58.
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[Malkov and Diamond ‘09, PoP] 

L-mode state 

Transient state 

H-mode state(unstable) 

QH-mode state(stable) 

units, as opposed to the runs with q̃=0, where the QH-mode
quickly decays to the T-mode going through the metastable
states near the H- and L-modes !Fig. 2".

V. SUMMARY AND CONCLUSIONS

In this paper we have investigated a low order !3-ODE"
model of L-H transition formulated earlier in Refs. 25 and
26. Particular emphasis has been made on the study of the
oscillatory transient mode which appears to be a key for
understanding the dynamics of the L-H transition.

The principal results of this study are:

!1" There are as many as four stationary states of the system
!singular points of ODEs" which can be organized by
growing pressure gradient !and generally by the increas-
ing control parameter q" in the following manner:
L-mode, transient oscillatory T-mode, H-mode, and, fi-
nally, the quiescent H-mode !QH". Physically, their
meaning is as follows. In the L-mode, the DW instability
driven by the pressure gradient saturates due to the non-
linearity of the DW mode and due to the mean flow. The

ZF is not active. With the increasing power the T-mode
is activated in which the ZF is generated and provides an
additional suppression of the DW which, in turn, drives
ZF. This feedback loop naturally results in an oscillatory
behavior of the T-mode, which can be attributed to the
dithering observed in various experiments on the L-H
transition.18 In the H-mode, the ZF is again suppressed
completely as in L-mode, but the pressure gradient is
higher because of the multiplicity of the DW stationary
states, caused by their nonlinear pressure gradient de-
pendence. In the QH-mode, not only the ZF but also the
DW vanishes completely and the heat production is bal-
anced by the neoclassical transport.

!2" We identified center manifolds of these fixed points.
These are two-dimensional attractors which the system
orbits quickly approach when they are close to the cor-
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time
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0.5
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1.5

E
,U

,N
,q

E(t)
U(t)
N(t)
q(t)

FIG. 6. Sequence of transitions shown for q!t" slowly varying from
q=0.47 !stable L-mode condition" to q=0.62 !stable QH" and back. Other
parameters are the same as in Fig. 1.
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FIG. 7. Stabilization of the QH-mode by the modulation of heating rate q.
The upper panel shows a numerical solution with the average q̄=0.54, the
oscillatory part q̃=0.08, and the modulation frequency !=0.31. The initial
conditions are chosen close to the QH-mode with U=E=0.01. The lower
panel shows the run with q̃=0 and for the same values of the remaining
parameters.

FIG. 5. Three-dimensional trajectories, shown for the following set of
initial conditions N=1.1, 0.7, 0.8; U=0.01 !in all three cases";
E=0.01, 0.03, 0.05. Other parameters are fixed at the same values as in
Fig. 1.
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units, as opposed to the runs with q̃=0, where the QH-mode
quickly decays to the T-mode going through the metastable
states near the H- and L-modes !Fig. 2".

V. SUMMARY AND CONCLUSIONS

In this paper we have investigated a low order !3-ODE"
model of L-H transition formulated earlier in Refs. 25 and
26. Particular emphasis has been made on the study of the
oscillatory transient mode which appears to be a key for
understanding the dynamics of the L-H transition.

The principal results of this study are:

!1" There are as many as four stationary states of the system
!singular points of ODEs" which can be organized by
growing pressure gradient !and generally by the increas-
ing control parameter q" in the following manner:
L-mode, transient oscillatory T-mode, H-mode, and, fi-
nally, the quiescent H-mode !QH". Physically, their
meaning is as follows. In the L-mode, the DW instability
driven by the pressure gradient saturates due to the non-
linearity of the DW mode and due to the mean flow. The

ZF is not active. With the increasing power the T-mode
is activated in which the ZF is generated and provides an
additional suppression of the DW which, in turn, drives
ZF. This feedback loop naturally results in an oscillatory
behavior of the T-mode, which can be attributed to the
dithering observed in various experiments on the L-H
transition.18 In the H-mode, the ZF is again suppressed
completely as in L-mode, but the pressure gradient is
higher because of the multiplicity of the DW stationary
states, caused by their nonlinear pressure gradient de-
pendence. In the QH-mode, not only the ZF but also the
DW vanishes completely and the heat production is bal-
anced by the neoclassical transport.

!2" We identified center manifolds of these fixed points.
These are two-dimensional attractors which the system
orbits quickly approach when they are close to the cor-
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FIG. 6. Sequence of transitions shown for q!t" slowly varying from
q=0.47 !stable L-mode condition" to q=0.62 !stable QH" and back. Other
parameters are the same as in Fig. 1.
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FIG. 7. Stabilization of the QH-mode by the modulation of heating rate q.
The upper panel shows a numerical solution with the average q̄=0.54, the
oscillatory part q̃=0.08, and the modulation frequency !=0.31. The initial
conditions are chosen close to the QH-mode with U=E=0.01. The lower
panel shows the run with q̃=0 and for the same values of the remaining
parameters.

FIG. 5. Three-dimensional trajectories, shown for the following set of
initial conditions N=1.1, 0.7, 0.8; U=0.01 !in all three cases";
E=0.01, 0.03, 0.05. Other parameters are fixed at the same values as in
Fig. 1.
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One-dimensional model for L-I-H transition 
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One-dimensional model for L-I-H transition 
 

One dimensional feature gives new nonlinear dynamics, i.e. non-locality, 
which is characterized by non-diffusive turbulence transport, 
“turbulence spreading” [Hahm ‘02, PoP]. 

12 

∂I
∂t
−γLI −ΔωI

2 = χN
∂
∂x

I ∂I
∂x

$

%
&

'

(
)

Turbulence intensity equation:  

Local energy drive/dissipation Non-local energy diffusion 
(nonlinear diffusion) 

the final asymptotic forms are nearly independent of the ini-
tial conditions. Note that these are not “traditional” solutions
of the diffusion equation, since the nonlinear term plays an
important role in setting the diffusion rate. Another class of
solutions of interest is that for the case !=const, !NL
=const and D0=const. As this case corresponds to constant
or slowly varying background, it is discussed in some detail
here. After the re-scalings x→ !!NL/2D0"1/2x , t→!t ,"
→ !!NL/!""!x , t", Eq. !18" may be rewritten as

!"

!t
−
1
4

!2

!x2
"2 − "!1 − "" = 0. !21"

Equations !20a" and !20b" are immediately recognizable as a
variant of the well-known Fisher–Kolmogorov–Petrovski–
Piskunov !Fisher-KPP" equation for logistic-limited epi-
demic propagation,30,31 now with nonlinear diffusion. The
Fisher-KPP equation is a reaction-diffusion type equation
which is well known to exhibit spatiotemporally propagating
front solutions.32 A numerical solution of Eqs. !20a" and
!20b" !for localized initial conditions" is shown in Fig. 2.
This rather clearly suggests that the profile of "!x , t" time-
asymptotically approaches an expanding front, which decays
exponentially in space. This structure is similar to that of a
“leading edge,” which is a well-known solution of the Fisher
equation. Motivated by these observations, we ansatz the
similarity solution

"!x,t" = f!t"!1 − e−#x−d!t"# − e−#x+d!t"#" . !22"

Equation !22" describes a bounded, localized solution with
extent 2d!t" and with two expanding fronts, propagating in
opposite directions at speed d!t", where the dot denotes dif-
ferentiation with respect to time. Substituting Eq. !22" into
Eq. !21" yields !for t→#" a differential equation for d!t" and
an expression relating d!t" to f!t". These are

d!!t" −
1
2
+ 2e−d!t"cosh

−1!ed!t"/2"
$− 4 + e2d!t" = 0 !23a"

and

f!t" =
1

1 − 4e−2d!t" − 4
ed!t"cosh−1!ed!t"/2"

!− 4 + e2d!t""3/2
. !23b"

An implicit solution for d!t" follows directly from Eq. !23a"
in the form

FIG. 1. Behavior of the solutions for the cases !a" !=0.5 and !b" !=0.0, with !NL=0. The dots correspond to the result of numerical integration and the solid
line corresponds to the exact analytical solution. For !=0 the usual scaling $=x / t1/3 is obtained, whereas for !=0.5 exponential spreading is observed.

FIG. 2. Constant velocity expansion for the cases !=const and !NL=const.
The numerical simulation represented by the dots is in excellent agreement
with the asymptotic analytical solution represented by the solid lines. Even
more complex initial conditions approach the same asymptotic solution.

032303-7 Dynamics of turbulence spreading … Phys. Plasmas 12, 032303 "2005#
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Front propagation 

[Gurcan ’05, PoP] 
Fisher-KPP eq. 
Ballistic Propagation velocity  v ~ 2γD



We have developed a 1D model for I-phase. 
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�  Self-consistent 1D transport model for L-H transition 
� Time-evolution of limit-cycle behavior triggered by 

zonal flow with fast time scale. 
� Expansion of 0D Kim-Diamond model to 1D radial 

space. 
�  Remarks 

� Zonal flow / Mean flow competition , a’ la Kim-
Diamond’s  

� Poloidal momentum spin-up at the edge transport 
barrier 



1D transport model  
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Predator-prey model part 
 -- a la’ Kim-Diamond’s 
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∂t I = (γL −ΔωI −α0Eo −αVEV )I + χN∂x (I∂xI )

∂tE0 = AE0α0 (I / (1+ζ0EV )− I*)

ΕV = (∂xVE×B )
2

Driving term 
Local dissipation 

ZF shearing 
MF shearing Turbulence spreading 

Reynolds stress drive 
MF/ZF competition 

ZF collisional damping 
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gained by radial force balance 
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Zonal flow energy: E0=VZF
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Radial force balance equation: 
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Poloidal momentum spin-up 
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�  Coupling radial and parallel momentum force balance 
equations, we obtain 

−
∂uθ
∂t

=
1
nm

∇⋅ (ey

Πturb ) +µii

(neo) (uθ −uθ
(neo) )

         ~α5
γL
ω*

cs
2∂xI +ν iiq

2R2µ00 (uθ +1.17cs
ρi
LT

)

Totally, time-evolving 5-fields (n, p, I, E0, and uθ) are solved 
numerically.  

Turbulence drive obtained from 
stress tensor [McDevitt, PoP ‘10] Neoclassical effects 

Eq. of poloidal rotation 



In power ramp up, above a threshold 
transition occurs, following ramp-up of core 
quantity of profiles 
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I-phase is identified as an intermediate mode
 between L-H transition, with spatial structure. 
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r/a 

turbulence 

ZF 

Log(MF) 

Power ramp up 

L-mode I-phase H-mode 

Inward propagation of ZF, turb,  
and MF from the edge,  
due to turbulence spreading. 

 vd ~-10-4 cs~-50m/s 

ZF damping time dominant 



As the power ramp up further, MF dominant 
region expands at the edge region. 
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turbulence 

ZF 

Log(MF) 



Power ramp up/down, back transition, 
and hysteresis are seen. 
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Power ramp up Power ramp down 

turbulence 

ZF 

Log(MF) 

Heat power 

Pressure at r=0, representing averaged gradient 



summary on this study in progress 
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�  One dimensional extension of the Kim-
Diamond model is introduced, including 
�  Pressure/Density profile 
�  0D K-D model components (turbulence, ZF, 

MF)  
�  Radial force balance, i.e. mean flow 

equilibrium 
�  Poloidal rotation spin-up (neoclassical and 

turbulence drive) 
�  L-I-H-transitions with power ramp up are 

shown. Limit-cycle oscillation with ZF 
damping time scale is seen in the case of slow 
power ramp up.  
�  Limit-cycle propagates outward and inward. 
�  Hysteresis obtained in the power ramp up and 

down simulation. 
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Heat source 

Particle source 

Heat sink at x/a>0.82 

Particle deposition layer: Ldep  

S = γa exp −
(a− r − d)2
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Edge Boundary Condition: fixed for p, n, free for I, E0 and uθ 


