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I.  INTRODUCTION
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• Giant Molecular Clouds (GMCs):

– Are the densest regions in the ISM (<n> ~ 100 cm-3).

– Have supersonic linewidths (e.g., Zuckerman & Palmer 1974),
generally interpreted as turbulence.

– Are significantly self-gravitating:

• Approximate equipartition between |Egrav|, Ekin (and Emag?)
– Generally interpreted as virial equilibrium...
– ... powered by stellar energy injection.

• Are the sites of all present-day star formation (SF) in the Galaxy.

>
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A recently discovered property is that

• Velocity dispersion seems to scale with column density
and size (“radius”).

Gravitationally-bound 
clouds

Heyer+(2009):
sv /R1/2 ~ S1/2

Supersedes 
Larson´s
relations (1981): 

sv ~ R1/2
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• This talk addresses the nature of “turbulence” in molecular
clouds (MCs),

– the density probability density function (PDF).

– atomic cloud formation: MC precursors. How do they acquire
• mass,
• turbulence?

– GMC formation:
• need for self-gravity

– stellar feedback:
• How does it regulate the SF efficiency?
• Does it maintain clouds in equilibrium?

– the topology of bulk motions in molecular clouds.
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I. The probability density 
function (PDF) of the density 

field
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The probability density function (PDF) of the density field:

– The simplest (e.g., one-point) statistic for a compressible flow.

– Relevant for understanding the formation of density fluctuations.

– For isothermal flows, it develops a lognormal shape (Vázquez-
Semadeni 1994).
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– A consequence of (Passot & Vázquez-Semadeni 1998, Phys. Rev. E, 58, 4501):

• Shock jumps are multiplicative in the density: r2/r1 = M2, where M=
Mach #.

– Thus additive in s = ln r.

• In an isothermal flow, the sound speed cs is constant, so the
multiplicative factor depends only on the Mach number.

• The turbulent flow contains a distribution of velocity differences.

• Thus, there is a distribution of additive increments in s, all belonging
to the same distribution, and independent from each other.

è According to the Central Limit Theorem, s has a normal
distribution.
è r has a lognormal distribution.
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Density PDF in 5122

simulation of isothermal,
M = 0.6 turbulence.

Passot & Vázquez-Semadeni 1998

with
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– However, for general polytropic flows (Passot & Vázquez-Semadeni 1998)

• The sound speed, and thus M, become density-dependent:

• Thus, it is convenient to rescale

where M0 is the Mach # of the isothermal case.
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• So that the PDF reads

• In the limit of large s and g<1, this is dominated by the power-law
part.

• PV98 conjectured that the power-law in r might differ from 1/2 due
to the requirement of mass conservation.
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g = 1 g = 0.3

g = 1.7

• Besides, there is a symmetry s à– s, g à 2– g:

Passot & Vázquez-Semadeni 1998

1D simulations
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Other causes for departures from the 
lognormal PDF
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• A driving based on force, rather than acceleration,
because the applied acceleration depends on density
again (Passot & VS 1998).

• Self-gravity causes the development of a power-law tail
at high r (Klessen 2000; Dib & Burkert 2005; VS+ 2008; Kritsuk+ 2010;

Ballesteros-Paredes+ 2011).

• In general, anything that breaks the property of density-
independent jumps.
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Without self-gravity With self-gravity

Ballesteros-Paredes + 2011, MNRAS
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III. FORMATION OF 
ATOMIC CLOUDS
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– The mechanism of cloud formation by generic compressions in the
warm neutral medium (WNM) involves:

• The atomic medium is thermally bistable.

• A moderate (transonic) compression in the WNM can induce a phase
transition to the cold neutral medium (CNM) (Hennebelle & Pérault 1999).

• As gas continues to transit from the diffuse to the dense phase, a dense
cold cloud forms.

• Due to ram pressure of inflow or self-gravity, dense gas can overshoot
from CNM to GMC conditions and become significantly self-gravitating.

Thermal equilibrium curve 
(Field et al. 69, Wolfire et al. 95)

CNM
(stable)

WNM
(stable)

Unstable (gas cools 
upon compression).

Molecular gas
(self-gravitating)

)(eq L=G' nP
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– When a dense cloud forms out of a compression in the WNM,
it “automatically”

• acquires mass.

• acquires turbulence (through TI, NTSI, KHI – Hunter+86; Vishniac
1994; Walder & Folini 1998, 2000; Koyama & Inutsuka 2002, 2004; Audit &
Hennebelle 2005; Heitsch+2005, 2006; Vázquez-Semadeni+2006).

– The compression may be driven by global turbulence, large-
scale instabilities, etc.

WNM
n, T, P, -v1

WNM
n, T, P,  v1
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– For stronger compressions and later times, the compressed
layer becomes denser, turbulent, and thick, and continuously
grows in mass.

Ms ~ 2
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Hennebelle & Audit 2007
3D simulation
12003
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Very different from Mrms ~ 10, Fourier-driven isothermal boxes!

Vázquez-Semadeni+ 2008
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• Implications:

– The mass of a cloud is in general not constant, because there
is a continuing mass flux into it.

• Cloud’s mass generally increasing...

• ... except when consumed by SF.
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IV. FORMATION 
OF MOLECULAR 
CLOUDS
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• As a CNM cloud grows, it may eventually involve enough
mass to become strongly self-gravitating.
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• Simulations of MC formation and turbulence generation
including thermal instability AND self-gravity (Vázquez-
Semadeni et al 2007, ApJ 657, 870; see also Heitsch et al. 2008, 2009).

– SPH (Gadget) code with sink particles and heating and cooling.
– WNM inflow:

– n = 1 cm-3

– T = 5000 K
– Inflow Mach number in WNM: M = 1.25 (vinf = 9.2 km s-1)
– 1% velocity fluctuations.

Run 1 Run 2

Lbox 128 pc 256 pc

Linflow 48 pc 112 pc

Dtinflow 5.2 Myr 12.2 Myr

Minflow 1.1x104 Msun 2.6x104 Msun

Mbox
6.6 x 104 Msun 5.2 x 105 Msun

Converging inflow setup

Lbox

Linflow

Rinf
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Face-on 
view.

Note: Local 
nonlinear
fluctuations 
collapse 
earlier than 
whole 
cloud.

Because of 
shorter free-
fall time 
(Heitsch & 
Hartmann 
2008).
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Evolution of mass fraction at a given free-fall time tff 
(Heitsch & Hartmann 2008)

Most of the mass has long (CNM-like) free-fall time, but a small fraction 
reaches very short tff.

No self-gravity With  self-gravity
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These clouds are never in true virial equilibrium, but appear
virialized because of gravitational contraction.

SF starts 
(17.2 Myr)

Collapse 
starts 
(~11  Myr)

Apparent
virialization:
|Eg| ~ 2 Ek

Plots for the 
dense gas 
(n > 50 cm-3)

(Vázquez-
Semadeni et al.  
2007)

Eth

Ek

|Eg|
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Star formation begins long after onset of gravitational 
contraction.

If SF is to balance gravity, it must revert the ongoing 
collapse.

SF starts 
(17.2 Myr)

Collapse 
starts 
(~11  Myr)

(Vázquez-
Semadeni et al.  
2007)
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– Initial turbulence is transonic.
• Bulk velocities increase later because of gravitational contraction.

~ 0.5 km s-1

(Vázquez-Semadeni et al.  2007)

Turbulence driven by 
compression, through 
NTSI, TI and KHI 
(Walder & Folini1998; 
Koyama & Inutsuka 2002; 
Audit & Hennebelle 2005; 
Heitsch et al. 2005, 2006; 
Vázquez-Semadeni et al 
2006)

SF starts 
(17.2 Myr)

Inflow weakens, 
collapse starts 
(12.2 Myr)

1.4

2.7

4.1
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• This scenario implies that
– Molecular clouds should be undergoing gravitational contraction,

not be in equilibrium.

• Consistent with recent studies of the Orion A cloud (Hartmann & Burkert
2007), of clump NGC2264-C (Peretto et al. 2007), and of massive-star
forming regions (Galván-Madrid et al. 2009; Schneider et al. 2010; Csengeri et al.
2011).

Hartmann & Burkert  2007
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Vázquez-Semadeni+12, in prep. 2.6 x 107 SPH particles.
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• And also that (Vázquez-Semadeni, Kim et al. 2008):

– Density enhancements in turbulent media have in general a significant inward
component of their velocity field.

– Gravity is necessary not only to cause collapse of Jeans-unstable objects, but
even to form them.

Dots: individual subregions
Contours: 2D histogram

cloud Small
ncloud Large

n
Large

n
Small

n

Without self-gravity With self-gravity

Density of gravitationally-bound box of the same size as the 
sub-boxes represented by the dots.
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IV.  STELLAR FEEDBACK
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– It is usually believed that stellar feedback can feed the
turbulence...

– ... which in turn can maintain clouds in approximate equilibrium
(Norman & Silk 1980; McKee 1989; McKee & Tan 2003; Krumholz & McKee
2005; Krumholz+06).

– Can it?
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f) Large-scale numerical simulations of GMC formation and evolution,
including feedback (Vázquez-Semadeni et al. 2010, ApJ, 715,
1302).
– The model:

• Cloud formation by colliding flows in warm neutral medium (WNM).
• Self-gravity; Heating and cooling; Star formation;

Heating from stellar particles.

Converging inflow setup

Lbox

Linflow

Rinf

Ms,inf

Ms,rms

Minf

Ms,inf: Mach number of inflow speed 
w.r.t. warm gas.

Ms,rms: Mach number of background 
turbulence in WNM.

Minf: Mass in colliding cylinders
= 2 r p Rinf

2 Linf

nWNM = 1 cm-3

TWNM = 5000 K  è cs = 7.4 km s-1

Linflow = 112 pc Rinflow = 64 pc
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– Use code ART + AMR hydrodynamics (Kravtsov+1997, Kravtsov
2003).

– SF prescription:

• Stellar particles formed in cells where n > 4 x 106 cm-3.

• Stellar particles take ½ of cell’s mass è Mcell ~ 120 Msun.

• No accretion onto stellar particles.

• Each particle is assumed to contain one 8-Msun B star and form one
HII region.
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“Cloud 1” in run LAF1 (Large fluctuation amplitude with feedback).

20-pc measuring box



42
“Clouds 1 and 2” in run LAF1 (large fluctuation amplitude with feedback).
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• Results:

1. Massive clouds are not kept near virial equilibrium...

... nor dispersed!

Instead, accretion approximately balances gas consumption
by SF and dispersal by feedback.

Large-scale accretion continues; SF shifts from one place
to another.
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2. Again, density PDFs are not lognormal.

Feedback
No feedback

Feedback
No feedback
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3. Feedback mainly inhibits the local conversion of gas to
stars.

– Feedback operates on smaller scales than the scale of the
gravitational potential well.
» Feedback cannot prevent accretion from large scales.

– Feedback reduces SFE by redirecting some of the infalling
gas back to the diffuse medium.
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VI. GRAVITATIONALLY 
CONTRACTING 

MOLECULAR CLOUDS?
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• All the numerical models above show that MCs should be
gravitationally contracting.

• Consistent with recent observations:

Heyer et al.’s (2009) data
Heyer et al.’s (2009) data

Virial 
equilibrium
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• All the numerical models above show that MCs should be
gravitationally contracting.

• Consistent with recent observations:

Ballesteros-Paredes et al. 
2011, MNRAS, 411, 65

Free-fall

Heyer et al.’s (2009) data

Virial 
equilibrium
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VII. CONCLUSIONS
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Simulations of MC formation suggest that:
1. Converging WNM flows drive the formation of transonically turbulent

CNM clouds and GMCs.
– Not strongly supersonic.
– Cloud’s mass not constant, because of infall from envelope.

– Accretion must be taken into energy and mass budget.

2. Supersonic “GMCs” appear after gravitational contraction has begun.
– GMC formation may generally require self-gravity (but see Dobbs & Burkert 2011).
– MCs may be porous, permeated by more diffuse atomic gas (Goldsmith).
– SF starts last.
– A hierarchy of collapsing motions.

3. Dominant bulk motions in MCs may be gravitational contraction.
– Contraction starts before SF.
– Feedback inhibits the conversion of gas to stars, but not the large-scale

accretion onto the cloud.
– Random motions superposed on dominant collapsing motion.
– Produced by either

• Conversion of infall to random motions, or
• Stellar feedback.
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• Open questions:

– What is the efficiency of conversion of gravitational into random 
kinetic energy? (Vázquez-Semadeni+1998; Klessen & Hennebelle 2010)

– What controls the star formation efficiency?

– Observations to test the scenario (Galván-Madrid et al. 2009; Schneider et al. 
2010; Csengeri et al. 2011).
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THE END
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Kawamura et al. 2009

Class I 
Only YSOs

– Exhibit a 
possibly 
evolutionary 
sequence...
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– ... which appears to also be a mass 
sequence.

Kawamura et al. 2009
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• In two-phase atomic medium, in perfect pressure
equilibrium, expect a two-d-function PDF.

n [cm-3]

Volume 
fraction

WNM CNM
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• In 2D simulations of Fourier-driven turbulence that forgo the
polytropic assumption (i.e., solve the energy equation):

– P strays away from Peq where tcool > tcross.

Gazol, VS & Kim, 2005, ApJ, 630, 911

M=0.5

M=1

M=1.25

M=1.25

M=0.5

M=1

M referred to the sound speed at 104 K.

Bimodality increasingly erased by
turbulence as M increases.
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• Run with Lbox = 256 pc: (Vázquez-Semadeni et al.  2007, ApJ 657, 870)

Edge-on 
view.

WNM in box is 
initially Jeans-
stable. (Mbox ~ 
0.01 MJ)

Compression 
cools and 
compresses the 
gas. 

Dense, cold gas 
soon becomes 
turbulent and 
Jeans-unstable
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• Four simulations:

Large-amplitude initial fluctuations

Small-amplitude initial fluctuations
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“Central Cloud” in run SAF1 (small fluctuation amplitude with feedback).

20-pc measuring box
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3. Coherence (smoothness) and scale of initial compression(s)
determine type of star-forming region:

• Measured SFRs and SFEs consistent with
– Massive star-forming regions: Large-scale coherent collapse.
– Low-to-intermediate-mass regions: Small-scale coherent collapse.

“Average” low-mass cloud 
of Evans et al. 2009

Orion A cloud
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6. All self-gravitating simulations, including those with feedback,
exhibit global, cloud-scale gravitational contraction.

• Linewidth may correspond to infall, not virialized motions.
• Consistent with observed SFE if feedback destroys clouds.
• A simple model of cloud contraction + self-regulation yields realistic

SFEs and evolutionary stage durations.

• A hierarchical gravitational contraction process, perhaps driven
from Galactic scales?

GMC turbulence

Diffuse medium

Clump turbulence

SF

clumps


