Phase Transition Dynamics of Multi-Phase Interstellar Medium

Shu-ichiro Inutsuka (Nagoya Univ.)

16 - 19 November, 2011Asia Pacific Center for Theoretical Physics (APCTP), Pohang, Korea

Outline

- Timescale
- 1 Phase Equilibrium
 - Thermal Instability
- 2 Phase Equilibrium
 - Saturation Pressure
- 2 Phase Dynamics → Sustained Turbulence
- Further Analyses w/o shock
 - Evaporation, Condensation, New Instability, Magnetic Field
- Conclusion

Dynamical Timescale of ISM

- **Dynamical Three Phase Medium**
 - e.g., McKee & Ostriker 1977
 - SN Explosion Rate in Galaxy... 1/(100yr)
 - Expansion Time...1Myr
 - Expansion Radius... 100pc $(10kpc)^2 \times 100pc$ $(10^{-2} yr^{-1}) \times (10^{6} yr) \times (100pc)^3 = 10^{10} pc^3 \sim V_{Gal,Disk}$

Dynamical Timescale of ISM ~ 1 Myr

« Timescale of Galactic Density Wave ~ 100Myr

Expanding HII regions are also important.

Basic Equations

- Eq. of Continuity
- EoM

$$\frac{\partial \rho}{\partial t} + \frac{\partial}{\partial x} (\rho v) = 0$$
$$\frac{\partial}{\partial t} (\rho v) + \frac{\partial}{\partial x} (P + \rho v^2) = 0$$

- Eq. of Energy
 - Radiative Heating & Cooling: Γ , Λ
 - H, C⁺, O, Fe⁺, Si⁺, H₂, CO
 - Chemical Reaction
 - HII, HI, H₂, CII, CO
 - Thermal Conduction
 - conduction coefficient: κ

Self-Gravity Negligible for Low Density Gas

$$\frac{\partial E}{\partial t} + \frac{\partial}{\partial x} \left(\left(E + P \right) \mathbf{v} - \kappa \frac{\partial T}{\partial x} \right)$$

$$= \rho \Gamma - \rho^2 \Lambda$$

$$\partial t \quad \partial x ($$

Radiative Equilibrium for a given density

Radiative Cooling & Heating

Koyama & SI (2000) ApJ **532**, 980, (adding CO to Wolfire et al. 1995)

Radiative Equilibrium for a given density

Textbook Example of Phase Equilibrium

Equal Areas of shaded regions (Maxwell's rule)

Exact Equilibrium of 2-Phases

- 1D Plane-Parallel Case: Zeldovich & Pikelner 1969
- 2D Cylindrical Symmetry: Graham & Langer 1973
- 3D Spherical Symmetry: Nagashima, SI, Koyama 2005 No Unique $P_{sat} \rightarrow 2$ -Phase with various P

2 Phase in Equilibrium

Dispersion Relation of Thermal Instability

"Field length" :
$$\lambda_{\rm F} \equiv \sqrt{\frac{\kappa T}{\rho^2 \Lambda}} \rightarrow 10^{-2} \, {\rm pc}$$

 $= \lambda_{\rm F}$.

Shock Propagation into WNM

Koyama & SI (2002) ApJ 564, L97

WNM Swept-Up by 14.4km/s Shock (3D) Koyama & Inutsuka 2002 х

Y

Z

Summary of TI-Driven Turbulence

 2D/3D Calculation of Propagation of Shock Wave into WNM

via Thermal Instability

- fragmentation of cold layer into cold clumps with long-sustained supersonic velocity dispersion (~ km/s)
 - 1D: Shock $\Rightarrow E_{th} \Rightarrow E_{rad}$
 - 2D&3D: Shock $\Rightarrow E_{th} \Rightarrow E_{rad} + E_{kin}$

 $\delta v \sim a \text{ few km/s} < C_{S,WNM} = 10 \text{ km/s}$

 \leftarrow 10⁴K due to Lyα line: Universality?

Koyama & SI (2002) ApJ 564, L97

Property of 2D "Turbulence"

δv < C_{S,WNM} → Kolmogorov Spectrum Hennebelle & Audit 2007; see also Gazol & Kim 2010

Further Analyses

Two Aspects in Multi-Phase Dynamics:

1. Effect of Inhomogeneous Pre-Shock Density for Propagation of Shock

2. Turbulence Driven by Thermal Instability without Shock

Two Aspects in Multi-Phase Dynamics #1. Effect of Inhomogeneous Pre-Shock Density

Shock waves can create turbulence in <u>inhomogeneous pre-shock gas</u> even without <u>cooling!</u> Giacalone & Jokipii 2007

 $t_{\rm growth} < t_{\rm cooling}$

Supernova Shock in Multi-Phase ISM

 $\nabla \rho \times \nabla p \neq 0 \rightarrow \text{Vorticity Creation} (\delta v \sim c_s)$ Magnetic Field Amplification via Turbulent Dynamo $B_{\text{max}} \sim 1\text{mG} (\beta \sim 1 \text{ @post shock})$ Mach # > 10⁴ Inoue, Yamazaki, & SI (2009) ApJ 695, 825

B~mG important for CRs

Time = 1425 yr

Inoue, Yamazaki, & SI (2009) ApJ 695, 825; (2010) ApJ 723, L108 \Rightarrow X-ray Observations of Supernova@age~10³yr $B \sim 1 \text{mG}$ (Bamba+2002, Uchiyama+ 2008, etc.) Two Aspects in Multi-Phase Dynamics # 2: Phase Transition Dynamics without Shock Waves

Does turbulence decay without external mechanical driving such as due to shock waves?

The Answer is NO!

Sustained "Turbulence" in Periodic Box

Periodic Box Evolution <u>without Shock Driving</u> With Cooling/Heating and Thermal Conduction Without Physical Viscosity (*Prandtl* # = 0)

Further Analysis on Phase Transition Dynamics

1. Evaporation & Condensation

- 2. New Instability of Transition Layer
- 3. Effect of Magnetic Field

Evaporation of Spherical CNM in WNM

Nagashima, Koyama, Inutsuka & 2005, MNRAS **361**, L25 Nagashima, Inutsuka, & Koyama 2006, ApJL **652**, L41

Evaporation of Spherical CNM in WNM

cf. "Tiny Scale Atomic Structure" Braun & Kanekar 2005, Stanimirovic & Heiles 2005

Further Analysis on Phase Transition Dynamics

1. Evaporation & Condensation

- 2. New Instability of Transition Layer
- 3. Effect of Magnetic Field

2) Instability of Phase Transition Layer

Instability of Phase Transition Layer

Linear Analysis of New Instability

Further Analysis on Phase Transition Dynamics

- 1. Evaporation & Condensation
- 2. New Instability of Transition Layer

3. Effect of Magnetic Field

Front Stability with B

Stone & Zweibel 2009, ApJ **696**, 233

Front Type	Hydrodynamic	Super-Alfvénic	Sub-Alfvénic
Evaporation	Unstable	Unstable	Stable
Condensation	Stable	Stable	Unstable

Detailed Analysis of Non-Linear Growth Needed

Colliding WNM with $B_0 = 3\mu G$

2-Fluid MHD Simulation (AD included)

Colliding WNM with $B_0 = 3\mu G$

2-Fluid MHD Simulation (AD included)

Implication

Can direct compression of magnetized WNM create molecular clouds? → Not at once.

<u>We need multiple episodes of compression.</u> Inoue & SI (2008) ApJ **687**, 303; Inoue & SI (2009) ApJ **704**, 161

May Explain Inefficient Star Formation...

Summary

- Shock waves in ISM create turbulent CNM embedded in WNM.
- TI-driven turbulence in Multi-Phase ISM
 - Evaporation/Condensation of CNM clouds
 - Instabilities in Phase Transition Front
 - Agree with Observed Kolmogorov Law
- We need some mathematics for TI-driven turbulence.