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Motivation

§ Linearly damped modes can 
be driven by these structures 
(subcritical instabilities)

Berk, et al., PoP (99)

Dupree, et al., PF (82)
Berman, et al., PF (85)

Kosuga, et al., PoP (10)

§ Fast particles transport and loss 
depend on the generation and 
evolution of phase-space structures  
(holes, clumps, blobs, granulations…) 

Berk, Breizman, et al., PoP (99)

Podestà, et al., PoP (10)

NSTX

§ High-energy ions drive Alfvén Eigenmodes, which may lead to their 
premature ejection.
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Approach

§ BB model as a tractable model with key ingredients, with qualitative and 
quantitative similarities with experiments Berk, Breizman, et al.,     

PFB(90), PRL(96), PoP(99)

§ First step: single resonance, which features isolated, long-lived coherent 
structures (Kubo >> 1)

Self-binding structures 
(water-bag model with 
2 BGK holes).
Roberts and Berk, PRL(67)

Berk, PF(70)

↔   2D fluid in a
gravitational field

↔   negative-mass
instability
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Initial distribution 
function

The BB model
Classic “bump-on-tail” instability, with collisions and external damping.

• Displacement Current Equation with an external wave 
damping accounting for background dissipative mechanisms,

• 1D kinetic equation with a collision operator including dynamical friction (drag), 
and velocity-space diffusion,

• Single electrostatic wave,

Berk, et al., PoP(95)

COnservative Berk-Breizman 
semi-Lagrangian Extended Solver

COBBLES

Lesur, et al., JAEA-R(07)
Lesur, et al., PoP(09)

This work: collisionless case
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No damping ( = 0) Finite damping (~)

The presence of enough damping leads to the creation and evolution of 
phase-space structures. This self-organisation process allows to tap much 
more free energy to compensate for  .

Holes and clumps

Berk, Breizman, Petviashvili, PLA(97)

BGK-like
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Subcritical instability

Stable,  < 0

Time ()

Electric field amplitude |E|

Unstable,  > 0

Time ()

Nonlinearly unstable,  < 0

Time ()

Þ Critical slope   = Linear growth rate   ≈  −  	

(Subcritical instability)
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Symmetric case
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In δf simulations with f0(v)=const., we observe symmetric 
hole/clump pairs
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Momentum exchange

Without dissipation,

v

vR

vh

vc

hole momentum 
must balance 

clump momentum

Incompatible with symmetric 
hole/clump pairs,
where

With dissipation,

holes and clumps can 
exchange momentum 

with the wave
ÞWave/particles momentum exchange is a 

mechanism of hole/clump creation and growth 

Conditions/threshold for existence of phase-space structures?
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Phasestrophy
Phasestrophy is the phase-space 
density auto-correllation,

Diamond, Itoh2, Modern Plasma Physics

Relation with relative entropy:

with

If f0(v)=const.,

Kosuga, Diamond, to be published

In parallel with potential enstrophy in 
quasi-geostrophic systems, (q is the 

potential 
vorticity)




clump

hole
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Phasestrophy growth
Total phasestrophy
grows in time as 
holes and clumps are 
continuously created.

fre
qu
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cy

time

time

The growth is 
nonlinear.

Phasestrophy growth is 
proportional to E-f correlation

(assuming a constant slope for f0)

Also proportional to change in 
momentum associated with h/c 
evolution
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Drive by dissipation

Þ

time

in quasi steady-state 

Resonant part of 
particle/wave 

energy transfer

Power due to 
dissipationVariation of total wave 

energy, which includes 
sloshing energy.
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Single structure
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We track a single phase-space structure

Ψ ≡꼃  	




ΨΨ  
Single hole phasestrophy

Time ()
  

Phasestrophy density

 
∆
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Hole/clump growth rate

In the spirit of Dupree’s theory of 
phase-space density holes,

Dupree, PF(82)

Diamond, Kosuga, Lesur, 
Festival de Théorie 2009, Aix

 




Time ()

ΨΨ  

Single hole phasestrophy
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 ≡ ∆	 뎬 	 		()()
Our simulations show a qualitative 
agreement with theory
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Scaling with damping rate 

is independent of 
the sign of  	
Nonlinear growth only 
requires  > 0
(and a large enough seed)

Hole   
growth rate

 




Time ()

 < 0
 > 0

We repeat the analysis for different 
distribution functions, and different 
values of 

ÞNew understanding of 
subcritical instability
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In a nutshell
§ Growth of phase-space structures, quantified by phasestrophy growth, 
can be related equivalently to:

Take-out 
message

Importance of phase-space structures:
can drive instabilities, transport, …

§ For a single hole or clump, a new theory gives a simple expression for 
the structure growth rate,                     . Qualitative agreement with 
simulations. Some discrepancy at the beginning of chirping.

• Momentum exchange between the structure and the wave,
• Damping power.

§ Improvements on this work (minimum seed, validity range, effect of collisions).

Perspectives

§ Multiple resonances (next slide)
§ Application to drift wave holes and their interaction with zonal flow.

γhc ~ γL γd

§ New interpretation for nonlinear drive of instability
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Phase-space turbulence
§ Extension of quasi-linear theory with interacting phase-space structures.

Þ “phase-space turbulence”

Multiple-resonances simulation showing coherent phase-space structures, which 
disappear on a collisional diffusion time (not on a quasi-linear diffusion time).
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