Weak Field Amplification in Moderately Compressible MHD Turbulence

Tom Jones (UMN) David Porter (UMN) Dongsu Ryu (CNU) Jungyeon Cho (CNU)

17 November, 2011

Outline

Motivating Astrophysics – Galaxy Clusters weak large scale fields

A couple of relevant MHD issues

Ideal MHD simulations of two limiting cases

Coma Cluster: Diffuse, ICM Thermal X-rays

Coma Cluster: Turbulence Projected ICM Pressure Distribution (X-rays --XMM)

Roughly consistent with P(k) $\propto k^{-7/3}$ spec 100 kpc < L_{max} < R_{core} Inferred: $v_{turb} \sim 250$ km/s $P_{turb} \sim 10\% P_{therm}$

Schuecker + 04

17 November, 2011

Coma Cluster: Diffuse, unpolarized radio halo => >GeV electrons in > μ G magnetic field (β ~ 100)

ROSAT image

375 MHz radio contours (WSRT)

Mostly unpolarized,

Absence of strong mean field (?)

Brown & Rudnick 10

Cosmological Simulations Suggest Turbulence Likely => Amplification of very weak seed fields

Distribution of Turbulently Amplified Magnetic Fields in such a simulation

 $100 h^{-1} Mpc^3 box$

Ryu+ 08

17 November, 2011

Magnetic Field in Simulation Cluster

1 h⁻¹ Mpc³ box

MHD Cosmology Simulation by K. Dolag (Pete Mendygral)

17 November, 2011

Log(B)

Creation & Evolution of Vorticity

Then Vortex Stretching to Amplify

$$\frac{\partial \omega}{\partial t} = \nabla \times (u \times \omega) + v \nabla^2 \omega = \frac{1}{\rho^2} \nabla \rho \times \nabla P$$

$$\frac{d \ln \left(\frac{|\omega|}{\rho} \right)}{dt} = \frac{\omega \cdot [(\omega \cdot \nabla)u]}{\omega^2} \sim \frac{dl/dt}{l},$$

Similar Magnetic Field Generation and Amplification :

The Magnetic Induction Equation using Generalized Ohm's Law

$$\frac{\partial B}{\partial t} = \nabla \times (u \times B) + \eta \nabla^2 B - \frac{1}{e n_e^2} \nabla n_e \times \nabla P_e$$

 $\eta \text{ is resistivity}$

Mathematical structure same as the Vorticity Equation:

Source Term (Biermann Battery) when ∇n_e × ∇P_e ≠ 0 (e.g., at curved shocks)
 Field intensity, B(t) ∝ l(t) --stretch and fold amplification)
 Dissipation, diffusion measure, R_M=uL/η=P_rR_e Where P_r = v/η is the Prandtl number

Generation of Magnetic Fields in Simulations of Driven, Compressible MHD Turbulence

>3D periodic box L_x = L_y = L_z = 10 (up to 2048³ zones) MHD TVD -- 2nd order Eulerian, compressible MHD Constrained Transport to maintain∇·B = 0

 ➢ Isothermal, c_s = 1, so box <u>sound crossing time = 10</u> (also roughly largest eddy turnover time, t_{eddy})
 ➢ =1

 \succ "Ideal" MHD, so P_r =v/ η ~ 1

>Initially very weak, mean field, β =10⁶

➢ Random Driving Power, P_k∞k⁶exp(-8k/k_p), k_p=4π/L_x, peaks ~ L_d = 2/3 L_x, => u_{RMS}~1/2 c_s

> Driving form ranges between purely solenoidal ($\nabla \cdot \delta u = 0$) to purely compressional ($\nabla \times \delta u = 0$)

17 November, 2011

Illustrate Two Extremes of Forcing

Case 1: Purely Solenoidal ($\nabla \cdot \delta u = 0$)

Case 2: Purely Compressional ($\nabla \times \delta u = 0$)

Case 1: Magnetic Field Evolution

Note evolution of scales and transition from 'tubes' to 'ribbons'

17 November, 2011

KAW6: Pohang

t = 0 to t = 250

1024³ simulation

Case 1: Magnetic Flux Structure Summary

t=10, 20, ..., 160

1024³

Log B

17 November, 2011

Case 1: Magnetic Flux Structures 2048³ simulation

t = 20 end of exponential phase t = 130 early 'saturation'

Case 1: Magnetic Flux Lines & Vorticity

Flux tubes & $|\omega| = |\nabla \times u|$ rendering

Porter, Ryu, Cho & Jones

t = 130

2048³

simulation

Case 1: Magnetic Flux Lines & Vorticity

Flux tubes & $|\omega| = |\nabla \times u|$ rendering

Porter, Ryu, Cho & Jones

t = 130 2048³ simulation

Rotation animation

17 November, 2011

Case 1: Comparison incompressible simulation Magnetic Field Structures

Spectral code Cho & Ryu

512³ simulation

Case 1: Scaling Relations Structure Function slopes

Case 2: Purely Compressional Forcing Turbulent, Spectral Energy Evolution

Case 2: Purely "Compressional" Driving

Generation of vorticity and magnetic field

Zoomed in slice at t = 5 showing relationships

512³ simulation

Case 2: Generation of vorticity and magnetic field

Case 2: Magnetic Field Evolution

Note slow development of filaments and propagating patterns following shocks

t = 0 to t = 120

1024³ simulation

Sliding color scale

Case 2: Magnetic Field Structures

t = 120

1024³ simulation

Note: Green, k⁻², line is the same in all frames

Note: Green, k⁻², line is the same in all frames

Note: Green, k⁻², line is the same in all frames

Note: Green, k⁻², line is the same in all frames

Note: Green, k⁻², line is the same in all frames

17 November, 2011

Case 2: Power Spectra, t = 625

Summary

- Turbulence driven by structure formation (& other processes) may be very significant in galaxy clusters, transferring a significant energy to magnetic fields by the small scale dynamo
- If the magnetic field reaches saturation levels it may be highly intermittent
- If the magnetic field reaches saturation the field topology may evolve from flux tubes to flux ribbons (laminated)
- Compressive forcing to generate vorticity modifies turbulence properties significantly
- > In the cluster context, there may not be enough time available to reach a fully saturated state (consistent with observed large β)

Case 3 Energy Spectra

Some Background Physics: I – Generation & Evolution of Vorticity

Shear (vorticity) is a basic element of 3D turbulence

$$\omega = \nabla \times u \sim \frac{u}{r_{eddy}} \sim \frac{1}{\tau_{eddy}}$$

Curl of Navier Stokes Equation^{*} => Vorticity Equation:

$$\frac{\partial \omega}{\partial t} = \nabla \times (u \times \omega) + v \nabla^2 \omega = \frac{1}{\rho^2} \nabla \rho \times \nabla P$$

v is viscosity

*(Ignoring MHD, Maxwell stresses for the moment)

Case 1: Magnetic Field Structure in Saturated Flow:

-u & B fields intermittent -striated on scales $l < l_A$ ($v_A(l_A) = u(l_A)$) ribbon-like magnetic flux structures

t = 130 2048³ simulation

 $l_{\rm A} \simeq 0.2 {\rm L}$

Porter, Ryu, Cho & Jones

