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Outline 2

➠ Motivation: Do we interpret Larson’s scaling laws correctly?

➠ Observations of molecular clouds vs. supersonic turbulence

models.

➠ Star-forming molecular clouds vs. adaptive mesh refinement

simulations with self-gravity.

➠ Further reading: ApJ 727, L20 (2011); arXiv:1111.2827

(2011).
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Motivation: Interpretations differ 3

Linewidth–size relation for molecular clouds

• Left: Larson (1981): σu = 1.10L0.38 km s−1.

• Observed nonthermal linewidths originate from a common hierarchy of interstellar

turbulent motions . Structures cannot have formed by simple gravitational collapse.

• Right: Solomon et al. (1987): σu = (1.0±0.1)S0.5±0.05 km s−1.

• The size-linewidth relation arises from virial equilibrium , σu = (πGΣ)1/2R1/2. MCs are in

or near virial equilibrium since their mass determined dynamically agrees with other

independent measurements. MCs are not in pressure equilibrium with warm/hot ISM.
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Outline 4

I. Supersonic turbulence,
no gravity
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Column density maps 5

Density structures are overall morphologically similar, but...

• Left: 20483 model of isothermal HD turbulence, Mach 6, no self-gravity [Kritsuk et al. 2009].

• Right: 12CO(1−0) map of Taurus MC [Goldsmith et al. 2008].

• “Striations” are missing in HD simulations. Trans-Alfvénic turbulence in low-density gas.

• 12CO is “blind” with respect to dense star-forming filaments, where gravity plays a role.
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Mass–size relation 6

mℓ = m0(ℓ/ℓ0)dm , where dm is the mass dimension
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• Left: 20483 model of isothermal HD turbulence, Mach 6, no self-gravity [Kritsuk et al. 2009].

• Solenoidal forcing: dm = 2.28±0.01 in the inertial range.

• On small scales: dm ≈ 2 – shock fronts.

• Right: Mass–size relation for 580 MCs: dm = 2.36±0.04 [Roman-Duval et al., 2010], see

also earlier papers by Falgarone & Phillips (1991); Elmegreen & Falgarone (1996).

• Mass dimensions are similar.
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Mass–size relation 7

mℓ = m0(ℓ/ℓ0)dm , where dm is the mass dimension
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• Left: 10243 model of isothermal HD turbulence, Mach 6, no self-gravity [Kritsuk et al. 2007].

• Natural forcing: dm = 2.39±0.01 in the inertial range.

• On small scales: dm ≈ 2 – shock fronts.

• Right: Mass–size relation for 580 MCs: dm = 2.36±0.04 [Roman-Duval et al., 2010], see

also earlier papers by Falgarone & Phillips (1991); Elmegreen & Falgarone (1996).

• Mass dimensions are similar.
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Linewidth–size relation 8

First-order structure functions of velocity:
S1(u,ℓ) ≡ 〈|δu|〉 = u0ℓ
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• Left: 10243 model of isothermal HD turbulence, Mach 6, no self-gravity [Kritsuk et al. 2007].

• Simulation: ζ1 = 0.54±0.01.

• Right: A sample of 27 GMCs (including substructure) [Heyer & Brunt, 2004].

• Observation: ζ1 = 0.56±0.02; u0 is “universal.”

• First-order velocity SFs have similar slopes.
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Universality in compressible turbulence? 9

Third-order structure functions of velocity do not scale linearly:
S3(u,ℓ) ∝ ℓ1.3
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• 10243 model of isothermal HD turbulence, Mach 6, no self-gravity [Kritsuk et al. 2007].

• Density-weighted velocity: υ≡ ρ1/3u Total energy is conserved: E = ρu2/2+ c2
s ρ lnρ

• Linear scaling: S3(υ,ℓ) ∝ ℓ1 independent of the Mach number.

• Density-weighted velocity is a good candidate for universa l behavior.
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Column density–size relation 10

Two ways to determine Σℓ ∝ ℓ? based on dimensional analysis:

1. Using the mass-size relation:

➳ Assume dm = 2.36±0.04 [Roman-Duval et al., 2010]

➳ Then Σℓ ∝ mℓℓ
−2 ∝ ℓdm−2 ∝ ℓ0.36±0.04

2. Using the cascade concept:

➳ Assume ρℓ(δuℓ)3ℓ−1 ∝Σℓ(δuℓ)3ℓ−2 ∝Σℓℓ
3ζ1−2 ∝ const

➳ Assume ζ1 = 0.56±0.02 [Heyer & Brunt, 2004]

➳ Then Σℓ ∝ ℓ2−3ζ1 ∝ ℓ0.32±0.06

Linewidth–size and mass–size relations both give Σℓ ∝ ℓ1/3
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Linewidth–size scaling coefficient vs. column density 11

Find u′
0 ≡ δuℓℓ

−1/2 ∝Σ
?
ℓ

based on dimensional analysis:

➳ Assume S1(υ,ℓ) = 〈|δυℓ|〉 ∼ 〈ǫ1/3
ℓ

〉ℓ1/3, where υ≡ ρ1/3u

➳ Intermittency 〈ǫ1/3
ℓ

〉 ∼ ℓτ1/3 , where τ1/3 ≈ 0.055 [Pan et al. 2009]

➳ Then δuℓℓ
−1/2 ∝ ρ−1/3

ℓ
ℓ−1/6+τ1/3 ∝Σ

−1/3
ℓ

ℓ1/6+τ1/3

➳ We know that Σℓ ∝ ℓ1/3

➳ Therefore δuℓℓ
−1/2 ∝Σ

1/6+3τ1/3 ∝Σ
0.33

Linewidth–size scaling coefficient u′
0 ∝Σ

1/3
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The observed u
′
0
−Σ relation 12
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• 13CO observations of 162 MCs with improved angular/spectral resolution [Heyer et al. 2009].

• Solid lines w. slopes 0.34±0.04 and 0.32±0.03 show least square fits to A1 and A2

subsets.

• Dashed line shows the correlation expected for clouds in virial equilibrium, σuR−1/2 ∝Σ
1/2.

• Observed scaling is reasonably close to our prediction.
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Outline 13

II. Compressible turbulence +
gravity
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Herschel Gould Belt Survey: Taurus 14

Andre et al. (2011) SPIRE 500 micron

20 pc
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Herschel: Taurus B213 filament 15

t

1 pc

Andre et al. (2011)SPIRE 500 micron
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Column density maps of fields in Polaris and Aquila 16

Herschel-SPIRE/PACS: 70, 160, 250, 500µm [André et al. 2010]

• Left: A subfield in Polaris Flare . Curvlet transform used to enhance contrast.

• Right: A subfield in Aquila : ⋆ – Class0 protostars; △ – prestellar cores.

• Stability analysis by Inutsuka & Miyama (1997) ⇒ Polaris filments are stable.
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Mass–size diagrams for starless cores 17

Herschel-SPIRE/PACS: 70, 160, 250, 500µm

André et al. (2010); Könyves et al. (2010); Men’shchikov et al. (2010)

• Left: 302 starless cores of Polaris are unbound.

• Right: Out of 541 starless cores in Aquila 341 were classified as prestellar (N).
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Column density PDF & starless cores in Aquila 18

If nonlinear gravitational instability indeed settles on stable attractive similarity
solutions for gravitational collapse, then the high-end density PDF and the
mass–size correlation for prestellar cores are related.

• Density distribution: ρ(r ) ∝ r−n ⇒ Column density: Σ(R) ∝ R1−n

• Density PDF: dV (ρ)/dρ∝ ρm ⇒ Column density PDF: dS(Σ)/dΣ∝Σ
p

• n = 12/7 for the PF solution [Penston 1969] ⇒ m =−3/n = 7/4 = 1.75 and p =−2.8

• n = 2 for the LP solution [Larson-Penston 1969] ⇒ m =−1.5 and p =−2/(n −1) =−2

High-end PDF power index:

p =−2.7±0.1

[André et al. 2011]

Mass–size relation based on the PDF:

dm = 3−n = 2(1+1/p) ≈ 1.26

Mass–size relation for 541 starless cores:

mℓ ∝ ℓ1.13±0.07

[André et al. 2010]
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Column density PDF & starless cores in Aquila 19

If nonlinear gravitational instability indeed settles on stable attractive similarity
solutions for gravitational collapse, then the high-end density PDF and the
mass–size correlation for prestellar cores are related.

• Density distribution: ρ(r ) ∝ r−n ⇒ Column density: Σ(R) ∝ R1−n

• Density PDF: dV (ρ)/dρ∝ ρm ⇒ Column density PDF: dS(Σ)/dΣ∝Σ
p

• n = 12/7 for the PF solution [Penston 1969] ⇒ m =−3/n = 7/4 = 1.75 and p =−2.8

• n = 2 for the LP solution [Larson-Penston 1969] ⇒ m =−1.5 and p =−2/(n −1) =−2
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High-end PDF power index:

p =−2.50±0.03

[Kritsuk et al. 2011]

Mass–size relation based on the PDF:

dm = 2(1+1/p) ≈ 1.20±0.01

Mass–size relation for 541 starless cores:

mℓ ∝ ℓ1.13±0.07

[André et al. 2010]
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Jeans mass as a function of scale 20

☞ Jeans mass m J
ℓ
∝σ3

ℓ
ρ−1/2
ℓ

, where σ2
ℓ
≡ δu2

ℓ
+c2

s [Chandrasekhar 1951].

☞ Sonic scale ℓs such that δuℓs
= cs.

☞ If ℓ <
∼ ℓs then σ2

ℓ
≈ c2

s and m J
ℓ
∝ ρ−1/2

ℓ
∝ ℓ(3−dm)/2 ∝ ℓ0.32.

☞ If ℓ >
∼ ℓs then σ2

ℓ
≈ δu2

ℓ
and

m J
ℓ
∝ δu3

ℓ
ρ−1/2
ℓ

∝ δυ3
ℓ
ρ−3/2
ℓ

∝ ℓ1+3(3−dm)/2 ∝ ℓ1.96.

☞ A small change in σℓ scaling creates a big break in Jeans mass scaling!

☞ Because of that, the ratio µℓ ≡ mℓ/m J
ℓ

changes its slope at ℓs:

☞ µℓ ∝ ℓ3(dm−1)/2 ∝ ℓ2.04 for ℓ <
∼ ℓs;

☞ µℓ ∝ ℓ(5dm−11)/2 ∝ ℓ0.4 for ℓ >
∼ ℓs.

☞ This creates a range of Jeans-unstable structures (µℓ > 1) above ℓs.

☞ ℓs ∼ 0.1 pc sets the characteristic mass for the CMF, if µℓs
> 1.
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Core Mass Function for Polaris & Aquila 21

Herschel-SPIRE/PACS: 70, 160, 250, 500µm

André et al. (2010)

• Left: CMF for 302 starless cores of Polaris .

• Right: CMF for 541 starless cores in Aquila .

• A lognormal fit and a power law fit with a slope of −1.5±0.2.

• Compare to Salpeter slope of −1.35 in the dN /dlog M format.
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Summary 22

➠ Larson’s scaling relations are controlled by interstellar

turbulence on scales 0.1−50 pc.

➠ Gravity can be important in GMCs with masses in excess of

104 M⊙.

➠ In translucent clouds, self-similar turbulent scaling is

preserved down to 10−3 pc.

➠ In overdense regions, self-gravity breaks the

turbulence-induced scaling at the sonic scale.

➠ Prestellar cores form in a range of gravitational instability right

above the sonic scale ∼ 0.1 pc.
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