ISM Turbulence: Effects of Compressibility and Gravity

Alexei Kritsuk

University of California, San Diego

Collaborators: Rick Wagner, Mike Norman (SDSC, La Jolla, CA),

David Collins (LANL, Los Alamos, NM),

Liubin Pan (ASU, Tempe, AZ),

Paolo Padoan (ICREA/ICC, Barcelona, SP)

Fundamental Processes in Astrophysical Turbulence

APCTP, Pohang, Korea – November 17, 2011 Alexei Kritsuk

- Motivation: Do we interpret Larson's scaling laws correctly?
- Observations of molecular clouds vs. supersonic turbulence models.
- Star-forming molecular clouds vs. adaptive mesh refinement simulations with self-gravity.
- Further reading: ApJ 727, L20 (2011); arXiv:1111.2827 (2011).

Linewidth-size relation for molecular clouds

• Left: Larson (1981): $\sigma_u = 1.10L^{0.38}$ km s⁻¹.

- Observed nonthermal linewidths originate from a common hierarchy of interstellar turbulent motions. Structures cannot have formed by simple gravitational collapse.
- **Right:** Solomon et al. (1987): $\sigma_u = (1.0 \pm 0.1)S^{0.5 \pm 0.05}$ km s⁻¹.
- The size-linewidth relation arises from virial equilibrium, $\sigma_u = (\pi G \Sigma)^{1/2} R^{1/2}$. MCs are in or near virial equilibrium since their mass determined dynamically agrees with other independent measurements. MCs are not in pressure equilibrium with warm/hot ISM.

I. Supersonic turbulence, no gravity

Column density maps

Density structures are overall morphologically similar, but...

- Left: 2048³ model of isothermal HD turbulence, Mach 6, no self-gravity [Kritsuk et al. 2009].
- **Right:** ${}^{12}CO(1-0)$ map of Taurus MC [Goldsmith et al. 2008].
- "Striations" are missing in HD simulations. Trans-Alfvénic turbulence in low-density gas.
- ¹²CO is "blind" with respect to dense star-forming filaments, where gravity plays a role.

 $m_{\ell} = m_0 (\ell / \ell_0)^{d_m}$, where d_m is the mass dimension

- Left: 2048³ model of isothermal HD turbulence, Mach 6, no self-gravity [Kritsuk et al. 2009].
- Solenoidal forcing: $d_{\rm m} = 2.28 \pm 0.01$ in the inertial range.
- On small scales: $d_{\rm m} \approx 2$ shock fronts.
- **Right:** Mass–size relation for 580 MCs: $d_{\rm m} = 2.36 \pm 0.04$ [Roman-Duval et al., 2010], see also earlier papers by Falgarone & Phillips (1991); Elmegreen & Falgarone (1996).
- Mass dimensions are similar.

 $m_{\ell} = m_0 (\ell / \ell_0)^{d_m}$, where d_m is the mass dimension

- Left: 1024³ model of isothermal HD turbulence, Mach 6, no self-gravity [Kritsuk et al. 2007].
- Natural forcing: $d_{\rm m} = 2.39 \pm 0.01$ in the inertial range.
- On small scales: $d_{\rm m} \approx 2$ shock fronts.
- **Right:** Mass-size relation for 580 MCs: $d_m = 2.36 \pm 0.04$ [Roman-Duval et al., 2010], see also earlier papers by Falgarone & Phillips (1991); Elmegreen & Falgarone (1996).
- Mass dimensions are similar.

Linewidth-size relation

First-order structure functions of velocity: $S_1(u, \ell) \equiv \langle |\delta u| \rangle = u_0 \ell^{\zeta_1}$

- Left: 1024³ model of isothermal HD turbulence, Mach 6, no self-gravity [Kritsuk et al. 2007].
- Simulation: $\zeta_1 = 0.54 \pm 0.01$.
- Right: A sample of 27 GMCs (including substructure) [Heyer & Brunt, 2004].
- Observation: $\zeta_1 = 0.56 \pm 0.02$; u_0 is "universal."
- First-order velocity SFs have similar slopes.

Universality in compressible turbulence?

Third-order structure functions of velocity do not scale linearly: $S_3(u, \ell) \propto \ell^{1.3}$

- 1024³ model of isothermal HD turbulence, Mach 6, no self-gravity [Kritsuk et al. 2007].
- Density-weighted velocity: $v \equiv \rho^{1/3} u$ Total energy is conserved: $E = \rho u^2 / 2 + c_s^2 \rho \ln \rho$
- Linear scaling: $S_3(v, \ell) \propto \ell^1$ independent of the Mach number.
- Density-weighted velocity is a good candidate for universal behavior.

Two ways to determine $\Sigma_{\ell} \propto \ell^2$ based on dimensional analysis:

1. Using the mass-size relation:

▷→ Assume $d_{\rm m} = 2.36 \pm 0.04$ [Roman-Duval et al., 2010]

ightarrow Then $\Sigma_\ell \propto \, m_\ell \ell^{-2} \propto \, \ell^{d_{
m m}-2} \propto \, \ell^{0.36\pm 0.04}$

2. Using the cascade concept:

 $\Rightarrow \Rightarrow \text{Assume } \rho_{\ell}(\delta u_{\ell})^{3} \ell^{-1} \propto \Sigma_{\ell}(\delta u_{\ell})^{3} \ell^{-2} \propto \Sigma_{\ell} \ell^{3\zeta_{1}-2} \propto const$

▷→ Assume $\zeta_1 = 0.56 \pm 0.02$ [Heyer & Brunt, 2004]

 \sim Then $\Sigma_\ell \propto \ell^{2-3\zeta_1} \propto \ell^{0.32\pm0.06}$

Linewidth–size and mass–size relations both give $\Sigma_\ell \propto \ell^{1/3}$

Find $u'_0 \equiv \delta u_\ell \ell^{-1/2} \propto \Sigma_\ell^2$ based on dimensional analysis:

▷ Assume $S_1(v, \ell) = \langle |\delta v_\ell| \rangle \sim \langle \epsilon_\ell^{1/3} \rangle \ell^{1/3}$, where $v \equiv \rho^{1/3} u$

▷ Intermittency $\langle \epsilon_{\ell}^{1/3} \rangle \sim \ell^{\tau_{1/3}}$, where $\tau_{1/3} \approx 0.055$ [Pan et al. 2009]

▷→ Then
$$\delta u_{\ell} \ell^{-1/2} \propto \rho_{\ell}^{-1/3} \ell^{-1/6+\tau_{1/3}} \propto \Sigma_{\ell}^{-1/3} \ell^{1/6+\tau_{1/3}}$$

ightarrow We know that $\Sigma_\ell \propto \ell^{1/3}$

▷ Therefore $\delta u_\ell \ell^{-1/2} \propto \Sigma^{1/6+3\tau_{1/3}} \propto \Sigma^{0.33}$

Linewidth–size scaling coefficient $u_0' \propto \Sigma^{1/3}$

The observed $u'_0 - \Sigma$ relation

• ¹³CO observations of 162 MCs with improved angular/spectral resolution [Heyer et al. 2009].

- Solid lines w. slopes 0.34 ± 0.04 and 0.32 ± 0.03 show least square fits to A1 and A2 subsets.
- Dashed line shows the correlation expected for clouds in virial equilibrium, $\sigma_u R^{-1/2} \propto \Sigma^{1/2}$.
- Observed scaling is reasonably close to our prediction.

II. Compressible turbulence + gravity

Herschel Gould Belt Survey: Taurus

Fundamental Processes in Astrophysical Turbulence

APCTP, Pohang, Korea – November 17, 2011

Herschel: Taurus B213 filament

Column density maps of fields in Polaris and Aquila 16

Herschel-SPIRE/PACS: 70, 160, 250, 500µm [André et al. 2010]

- Left: A subfield in Polaris Flare. Curvlet transform used to enhance contrast.
- **Right:** A subfield in **Aquila**: \bigstar Class0 protostars; \triangle prestellar cores.
- Stability analysis by Inutsuka & Miyama (1997) \Rightarrow **Polaris** filments are stable.

Herschel-SPIRE/PACS: 70, 160, 250, 500 μ m André et al. (2010); Könyves et al. (2010); Men'shchikov et al. (2010)

- Left: 302 starless cores of Polaris are unbound.
- **Right:** Out of 541 starless cores in **Aquila** 341 were classified as prestellar (▲).

Column density PDF & starless cores in Aquila 18

If nonlinear gravitational instability indeed settles on stable attractive similarity solutions for gravitational collapse, then the high-end density PDF and the mass–size correlation for prestellar cores are related.

- Density distribution: $\rho(r) \propto r^{-n} \Rightarrow$ Column density: $\Sigma(R) \propto R^{1-n}$
- Density PDF: $dV(\rho)/d\rho \propto \rho^m \Rightarrow$ Column density PDF: $dS(\Sigma)/d\Sigma \propto \Sigma^p$
- n = 12/7 for the PF solution [Penston 1969] $\Rightarrow m = -3/n = 7/4 = 1.75$ and p = -2.8
- n = 2 for the LP solution [Larson-Penston 1969] $\Rightarrow m = -1.5$ and p = -2/(n-1) = -2

High-end PDF power index: $p = -2.7 \pm 0.1$ [André et al. 2011]

Mass-size relation based on the PDF: $d_{\rm m} = 3 - n = 2(1 + 1/p) \approx 1.26$

Mass-size relation for 541 starless cores: $m_{\ell} \propto \ell^{1.13\pm0.07}$ [André et al. 2010]

Column density PDF & starless cores in Aquila 19

If nonlinear gravitational instability indeed settles on stable attractive similarity solutions for gravitational collapse, then the high-end density PDF and the mass–size correlation for prestellar cores are related.

- Density distribution: $\rho(r) \propto r^{-n} \Rightarrow$ Column density: $\Sigma(R) \propto R^{1-n}$
- Density PDF: $dV(\rho)/d\rho \propto \rho^m \Rightarrow$ Column density PDF: $dS(\Sigma)/d\Sigma \propto \Sigma^p$
- n = 12/7 for the PF solution [Penston 1969] $\Rightarrow m = -3/n = 7/4 = 1.75$ and p = -2.8
- n = 2 for the LP solution [Larson-Penston 1969] $\Rightarrow m = -1.5$ and p = -2/(n-1) = -2

High-end PDF power index: $p = -2.50 \pm 0.03$ [Kritsuk et al. 2011]

Mass-size relation based on the PDF: $d_{\rm m} = 2(1 + 1/p) \approx 1.20 \pm 0.01$

Mass-size relation for 541 starless cores: $m_\ell \propto \ell^{1.13\pm0.07}$

[André et al. 2010]

Jeans mass as a function of scale

 $<\!\!\! > \ell_s \sim 0.1$ pc sets the characteristic mass for the CMF, if $\mu_{\ell_s} > 1.$

Herschel-SPIRE/PACS: 70, 160, 250, 500 µm

André et al. (2010)

- Left: CMF for 302 starless cores of Polaris.
- **Right:** CMF for 541 starless cores in **Aquila**.
- A lognormal fit and a power law fit with a slope of -1.5 ± 0.2 .
- Compare to Salpeter slope of -1.35 in the $dN/d\log M$ format.

- Larson's scaling relations are controlled by interstellar turbulence on scales 0.1 50 pc.
- $^{\shortparallel}$ Gravity can be important in GMCs with masses in excess of $10^4~\text{M}_\odot.$
- In translucent clouds, self-similar turbulent scaling is preserved down to 10^{-3} pc.
- In overdense regions, self-gravity breaks the turbulence-induced scaling at the sonic scale.
- Prestellar cores form in a range of gravitational instability right above the sonic scale ~ 0.1 pc.

This research was supported in part by the National Science Foundation through grants AST-0808184, AST-0908740, and AST-1109570 as well as through TeraGrid resources provided by NICS and SDSC (MCA07S014) and through DOE Office of Science INCITE-2009 and DD-2010 awards allocated at NCCS (ast015/ast021).