
Magnetic Helicity and the Rapid 
Growth of Large Scale Magnetic 

Fields

KAW6  Pohang, South Korea             November 2011

Jungyeon Cho 
Dmitry Shapovalov
Alex Lazarian
Grzegorz Kowal
Greg Eyink



The Large Scale Dynamo

— The accumulation of magnetic 
energy in the largest scale modes 
of a system and their subsequent 
evolution

— In astrophysics we are concerned 
with the limit where the resistivity is 
very small.  (The difference between 
zero resistivity and infinitesimal 
resistivity can be large!)



Dynamos

Consider the limit of small resistivity, and 
ignore plasma effects (a dense medium, or 
scales large enough that these effects are 
ignorable).
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Topology 1 - Reconnection

— If the resistivity is exactly zero, then 
it can be shown that the topology of 
the magnetic field lines is invariant.  
“Large Scale” magnetic fields are 
intermittent and full of reversals on 
all scales.

— This difficulty goes away if 
reconnection is fast (occurs on 
dynamical time scales) even for 
infinitesimal resistivity.

— This effect is analogous to the way 
an infinitesimal viscosity in a 
turbulent medium destroys energy 





3D Turbulence and Current 
Sheets

— Without turbulence reconnection 
speeds are limited by current sheet 
thickness.

— With turbulence …. (LV99, LEV2011)

Figure from Kowal et al. 2009



Reconnection speed at fixed injection 
power and scale with strong and weak 
guide fields.



Topology II – What is the large 
scale electric field?
— Random fluctuations from individual 

eddies causes a random walk in large 
scale modes.  This generates a long 
wavelength tail with a Poisson 
spectrum. (VB97)

— If shear is present then the field 
component in the direction of the 
large scale flow is amplified by a 
factor 

— This does not produce a very strong 
large scale field, but it provides the 
seed field in galactic disk evolution (at 

St diffusion



What about systematic effects?  How can 
we evaluate          ? 

Take the time derivative, use the induction and 
force equations and multiply by the correlation 
time τ.  This is a Taylor series in time 
(convergence?).
a ij » e ikl uk¶ jul - bk¶ jbl( )t

Or 
(current helicity-kinetic helicity) x correlation time 
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Magnetic Helicity Conservation

HB depends on our choice of gauge.  Does 
this conservation law have any physical 
significance?

If we take                                        then the 
current

helicity and the magnetic helicity are closely 
related.
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“α” suppression

If we only consider h, the eddy scale 
contribution to the magnetic helicity, the 
conservation equation becomes:
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If the RHS is zero, then the electromotive force 
drives an accumulation of h, which turns off the 
electromotive force.  This is not really α 
suppression.  This is suppression of the 
electromotive force, regardless of its origin. 
(Gruzinov and Diamond)

To drive a dynamo beyond this point we need  
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Vishniac, Cho 2001

This suggests a fairly drastic reordering of 
causality for dynamos, at least for fields 
strong enough that the magnetic helicity on 
small scales becomes saturated.

The turbulence drives a magnetic helicity flux, 
which then determines the parallel component 
of the electromotive force.  On dimensional 
grounds

aligned with the spin of the system.  It can be 
estimated more precisely following the same 
procedure we used to get the electromotive 
force.



In the nonlinear limit
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This gives an electromotive force proportional 
to the derivative of the magnetic field, i.e. a 
“β- Ω” dynamo.



Predicted features of this dynamo:

1. The magnetic field has to exceed a 
critical fraction of the rms turbulent 
velocity, ~(Ωτ)

2. The growth rate will be roughly

3. Saturation due to the stiffness of the 
field lines once the field energy exceeds 
the turbulent energy density.  Suggests 
limit around 

4. Works fine in a periodic box.  No 
ejection of h necessary.



• Periodic box simulations (256 and 512 
cubed)

• Explicit viscosity and resistivity, tuned 
to be just above the level of the grid 
effects

• Large scale sinusoidal forcing to create 
periodic shear at kx=1

• Small scale forcing (varied, but typically 
k~25) with a typical eddy turn over rate 
close to the large scale shear.  (Non-
helical forcing)

• Small scale turbulence was anisotropic.  

How (what) did we do?  
(Shapovalov & Vishniac, ApJ 2011)



• Good (enough) magnetic helicity
conservation.  Dissipative losses were a 
bit more than an order of magnitude 
lower than all the other terms in the 
conservation equation including the 
div(j) term.

• Sufficiently anisotropic small scale 
turbulence would produce a strong 
dynamo.

• This was not a particularly good MHD 
turbulence simulation.  Not enough 
dynamic range on small scales, but the 
flow was chaotic.  (Doubling the 
resolution produced similar results, i.e. 

What did we see?  



• The large scale field was not steady, 
but moved in space and in intensity 
within the box.

• The kinetic helicity showed a strong 
peak early on in our “typical” case, but 
relaxed thereafter to a fraction of the 
current helicity.

• The field strength saturated close to the 
level of the shearing velocity and far 
above the level of the turbulence.

• The current helicity x the large scale 
magnetic field was strongly correlated 
with the electromotive force after 
several eddy turn over times.

What did we see?  
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Do we really need a large scale field?

In an inhomogeneous environment, the 
properties of the turbulence will vary with 
location.  We will get a nonzero divergence 
even for 

Is there such a term?  Go back to 
analytic expression for the magnetic 
helicity flux, assume no large scale 
field, except for the velocity field, and 
take the time derivative and multiply by 
the turbulent correlation time.  We 
recover this term with a positive sign 
(generally) and a coefficient ~0.3, 



How will a realistic inhomogeneous 
system evolve?

• The magnetic helicity h will 
accumulate in separate large scale 
regions, growing linearly with time.  
(That implies a linear growth in the 
current helicity.)

• The large scale magnetic field will 
evolve via the incoherent dynamo, 
i.e. the random addition of eddy 
scale electric fields will give a root N 
push to B, with a sign that varies 
every eddy turn over time.  Large 
scale shear will produce a net 
growth proportional to t3/2.    



• The current helicity will dominate the 
kinetic helicity induced by the environment 
after roughly one eddy turn over time.

• In less than one diffusion time, the growth 
of the large scale field reaches the point 
where it can couple to the accumulated 
magnetic helicity.  The latter cascades to 
large scales, driving a dynamo with a 
growth rate that increases as root(t), i.e. 
super-exponentially.

• This continues until the dynamo actually 
soaks up all the accumulating magnetic 
helicity, at which point the growth 
becomes roughly linear (the electromotive 
force is inversely proportional to the large 
scale field).



• As before the field lines start to inhibit 
helicity transport as their energy density 
passes the turbulent energy density

• Leading to a saturation much like the 
earlier case.

• The total time for growth to saturation 
varies, but is generally comparable to a 
few e-folding times in the exponential 
model of the dynamo.  



Applications?
— In accretion disks with MRI driven 

turbulence, the large and small 
scale fields are comparable, and 
similar to the rms turbulent velocity.  
There is no distinction between 
using small and large scale fields to 
drive the magnetic helicity flux.  We 
can recover a reasonable model for 
the dynamo if we consider the 
tendency of the eddies to flatten in 
the absence of vertical structure.

— Galaxies will grow their magnetic 
fields in a couple of rotations.



Conclusions:
— The dynamo process can be driven by 

the magnetic helicity flux, which is 
determined by the local properties of 
the turbulence and the shear/rotation 
of the fluid.

— In general, the growth of the large 
scale field is not exponential.  It is 
much faster.

— The saturation of the field is not 
pegged to the local rms turbulent 
speed, but depends on the height and 
shear of the system.

— Generically we expect a high 
correlation between the electric field 


