Non-Equilibrium Ionization (NEI) State and Electron-Ion Two-Temperature (2T) structure as a Probe of Shocks in Merging Galaxy Clusters (GCs)

> Special Thanks Prof. Dongsu Ryu

Takuya Akahori^{1,2}

¹Research Institute of Basic Science, Chungnam National University ²Center for Computational Sciences, University of Tsukuba

Collaborator: Kohji Yoshikawa²

5th. Korean Astrophysics Workshop: Shock Waves, Turbulence, and Particle Acceleration, 09/11/18-21 @APCTP, Pohang, Korea

Contents

Introduction

- Cosmological Shock Waves
- NEI/2T in merging GCs
- Previous Studies
 - Model and Calculation
 - Results
- The Bullet Cluster
 - What's the Bullet cluster?
 - Result (preliminary)
- Discussion

Future

Introduction Cosmological Shock Waves

- According to the ACDM cosmology, accretion shocks are ubiquitous and occur in magnetized plasma
 - Usually, Infall V > Sound Cs

	3	
Density n	10-2-4 cm-	10-4-7 cm ⁻³
Magnetic Fields B	a few µG	10-100 nG
Mach number V/Cs	a few	10-100 (a few)
	GCs	filaments

- Temperature T 10⁷⁻⁸ K 10⁵⁻⁷ K ■ Shocks heat up the plasma, but observational evidences... a few
- Merging GCs are targets/laboratories
 - to find cosmological shocks
 - to understand shock mechanisms
 - to discuss interesting phenomena around shocks (CR accel., IC, synchrotron,...)

Ryu+ 03

Bagchi+ 06

Introduction NEI/2T: Relaxation of Heated Plasma

Importance

- 2T: fundamental properties for discussing shock structure
- NEI: misread X-ray analysis -> affect Te (and Ti in future) estimations

Model and Calculation

Previous Studies Linked Region of Abell 399/Abell 401

- Linked (compressed) region with n_e~1.5×10⁻⁴ cm⁻³
- Suzaku field → NO shocks!
- Shock layers at the edge of the linked region

Suzaku Observation (Fujita+ 08)

Previous Studies Various Merging Simulation

Shock layers: M~1.5-2 (outskirts) M~2-4 (cores) T_{electron}/T_{mean}:

- 0.8-0.9 (outskirts)
- 0.5-0.8 (core)
- R/R_{CIE}*:
 - 1.2-1.4 (outskirts)
 - 1.6-2.2 (core)
- Viewing angle
 - Non-EQ effects are diluted significantly

*He vs. H-like $R = \frac{F(6.6 - 6.7 keV)}{F(6.9 - 7.0 keV)}$

ICM density + Mach num., Te/T, R/Req, and viewing angle dependences of R/Req (AY 09 submitted)

The Bullet Cluster Simulation

The Bullet Cluster Simulation What's the "Bullet" cluster?

55 58

6^h58^m42^s

36*

30⁸

Clowe+04

248

188

128

- X-ray substructure,
 "Bullet"-like shape
- Gas/Mass peaks offset
- Jump Condition: M= 3.0±0.4 (Markevitch 06)

Springel, Farrar 07

Mastropietro, Burkert 08

9/14

The Bullet Cluster Simulation 10/14 Result: Non-Equilibrium Ionization State

one temperature model (Instantaneous relaxation)

two temperature model (Coulomb relaxation)

■ For V~3000 km/s, Mach~3, Tsl~8 keV@front (unperturbed region Chandra observed) → R/R_{CIE}~1.1-1.3 is probable around the shock

The Bullet Cluster Simulation Result: Two-temperature Structure

■ For V~3000 km/s, Mach~3, Tsl~8 keV@front → Te/T~0.6-0.7 is probable around the shock

Discussion

- Imply the presense of rapid relaxation processes on M~3 shock
- Upper limit of $Tx < 25 \text{keV} \rightarrow 2T$ model is acceptable
 - Imply the presence of very hot ion with Ti~40-50 keV
 - Broad Fe K lines, ionization Ti \neq bremsstralhung Te

Future

X-ray Observation

- (201x~) eROSITA,
 NuSTAR, ASTRO-H,...
- (202X~) IXO

Calorimeter: ΔE=a few eV@7keV Imaging: 1-2 order better sensitivity@10-80keV

c.f....

Radio Observation

- (201x~) LOFAR,ASKAP, MEERKAT,...
- (202x~) SKA

10⁸ extragalactic radio sources@all-sky survey

Summary

Merging GC simulations, relaxing the assumptions of

the ionization equilibrium & the electron-ion temperature equipartition

Linked region of Abell 399 & Abell 401

 Non-equilibrium effects are significant around shock layers at the edge of the linked region (we newly predicted)

Systematic Study of Merging GCs

Non-equilibrium effects are clearly seen at shock layers with Mach 1.5-2.0 (outskirts) and 2-4 (cores), at least within < 30° of the viewing angle

The Bullet Clusters 1E0657-56

- R/Req=1.1-1.3 and Te/T=0.6-0.7 are probable around the shock
- If Tx>25keV \rightarrow 1T? Rapid thermal relaxation process on Mach 3
- If Tx<25keV \rightarrow 2T? Broad line (Ti>40keV) & diff. from continuum Te

The non-equilibrium features (NEI/2T) is one of the certain evidences of shocks in merging GCs, and of the keys to know the nature of cosmological shock waves