Hα Emission from the CR Precursor of the Supernova Shock

> Jae-Joon Lee (Penn State) John Raymond (CfA) Alex Wagner (ANU) Sangwook Park (Penn State)

Hα emission from fast Non-Radiative shocks

Velocity distribution of the postshock gas
Velocity distribution of the preshock gas
Structure of the Shock (precursor)

- Diffusive shock acceleration requires a precursor. (e.g., Blandford and Eichler, 1987)
- Observation of the precursor can constrain the key parameters of CR accelerations, e.g., diffusion coefficient.

Balmer-Dominated Filaments

- Non-radiative shock into a partially neutral medium.
- Preshock neutral hydrogens pass through the shock front and collisionally exited by postshock e⁻ & p⁺
- Neutral hydrogens will also be collisionally exited in the precursor
 - * Ha emission in the precursor represents neutral hydrogens excited by electrons.

Ha profile of Tycho (Ghavamian, 2001)

Balmer-Dominated Filaments

- Non-radiative shock into a partially neutral medium.
- Preshock neutral hydrogens pass through the shock front and collisionally exited by postshock e⁻ & p⁺
- Neutral hydrogens will also be collisionally exited in the precursor
 - * Ha emission in the precursor represents neutral hydrogens excited by electrons.

Ha profile of Tycho (Ghavamian, 2001)

Balmer-Dominated Filaments

- Non-radiative shock into a partially neutral medium.
- Preshock neutral hydrogens pass through the shock front and collisionally exited by postshock e⁻ & p⁺
- Neutral hydrogens will also be collisionally exited in the precursor
 - * Ha emission in the precursor represents neutral hydrogens excited by electrons.

A model Ha emission from Balmerdominated shock with CR precursor (Lee et al., in prep.)

Tycho

Tycho in X-ray (Chandra) Credit: NASA/CXC/Rutgers/J.Warren & J.Hughes et al.

Tycho in H α (KPNO)

Tycho

- Tycho : preshock gas has enough of neutral hydrogens (n_H~1 cm⁻³, f_{HI} ~ 80%) for the precursor to be visible.
- HST Observation of knot g, one of the brightest knots (Lee et al., in prep.)

* March, 2008 : WFPC2

Tycho in H α (KPNO)

Ground Based Contour : Chandra

SN1006

Crosscuts Perpendicular to the Local Shock Fronts

Crosscuts Perpendicular to the Local Shock Fronts

- Projection of another shocks?
- Curved shock fronts?
 - cannot be applied to cut01.
 - cannot explain the changes of linewidth (Lee et al., 2007)

- HST image of Tycho shows faint extended emission toward the upstream of the shock, which we suggest to be the emission from the precursor.
- Precursor emission can contribute ~50% of total narrow component flux.
 - contribution to observed long slit obs. would be lower, but still could be significant.

Comparison w/ Model Profiles

- → Ha emission from the precursor (Lee et al., in prep.)
 - Given the precursor profile, Ionization structure in the shock (precursor + postshock) is calculated.
 - * Ha emission profile is calculated accounting the radiative transfer of Ly β photons
 - \sim Ly β photons are converted to H α photons
 - v radiative transfer w/ monte carlo method

• Toy Precursor model : $T(x) = T_{peak} e^{-x/L}$

Comparison w/ Model Profiles

Properties of the shock is well determined

- * v_{shock} (~2000 km/s), n_{HI} (~1 cm⁻³), f_{HI} (~0.8)
- * assume constant density (ΔV in the precursor = 100 km/s)
- * Te/Tp in the postshock : but insensitive

+ $T_{peak} = 80000 \sim 100000 \text{ K}$

+ $L = 5 - 7 \times 10^{16} \text{ cm}$

Location of Shock Front

- sudden increase of broad component
- Narrow precursor w/ gradual increase of intensity & FWHM
- Change in centroid velocity (~5 km/s).
 Corresponds to ΔV 60 130 km/s

Lee et al. (2007)

- + Constraints : T_{peak} , ΔV (~100 km/s), L
- A time-dependent cosmic-ray (CR) modified shock model (Wagner et al., 2009)
 - Two-fluid approximation
 - Particle injection
 - Precursor heating due to the acoustic instability.
- Results
 - + Diffusion Coefficient : $K = 2 \times 10^{24} \text{ cm}^2 \text{ s}^{-1}$
 - + Injection Parameter : 4.2×10^{-3}
 - Energy Transfer Timescale : T = 420 yr

- + Constraints : T_{peak} , ΔV (~100 km/s), L
- A time-dependent cosmic-ray (CR) modified shock model (Wagner et al., 2009)
 - + Two-fluid approximation
 - Particle injection
 - Precursor heating due to the acoustic instability.
- Results

+ Diffusion Coefficient : $K = 2 \times 10^{24} \text{ cm}^2 \text{ s}^{-1}$

The thermal pressure still dominates and ~10% of the shock energy has gone into CRs Energy Transfer Timescale : T = 420 yr

Partially neutral medium makes the precursor observable.

Partially neutral medium makes the model more complicated.

- Our hydrodynamic simulation assumes fully ionized plasma. But the neutral fraction is about 80%.
- + T_e : Ha intensity profile
- + T_{HI} : narrow component width
- v_{HI}: centroid velocity of the narrow component

- T_e (10⁵ K) > T_{HI} (40000 K, from the narrow component linewidth) ??
 - non-Gaussian line profiles (Raymond et al., in prep.)
 - + $T_{HI} < T_p \sim T_e$: Charge exchange
 - + $T_{HI} \sim T_p < T_e$: Heating by high frequency waves?

Summary

- HST image of Tycho reveals a faint extension of the Ha emission to the upstream, which we suggest to be the emission from the CR precursor.
- The observed intensity profile is well fitted by our precursor emission model and is used to constrain some of the CR acceleration parameters.