Recent discoveries from TeV and Xray non-thermal emission from SNRs

Fabio Acero LPTA, Montpellier, France

Outline

Evidence of acceleration in SNRs using X-ray synchrotron

Brief presentation of Cherenkov astronomy

TeV emission from shell SNRs

Comparison of X/γ -ray thickness of the shell

TeV emission from SNRs in interaction with molecular clouds

Shell SNRs in non thermal X-rays

Non-thermal dominated

Vela Jr, RX J1713-3946

Thermal+Non-thermal

SN 1006, Tycho, Kepler, RCW 86, CasA, ...

Highly amplified B

X-ray emission confined in very thin filaments (arcsecs)

Most likely due to synchrotron losses of high energy radiating electrons

The derived magnetic field is highly amplified Vink & Laming, 2003, Berezhko & Voelk 2004, Parizot et al., 2006

CasA -> B~500 μ G (B_{ISM} ~ 5 μ G)

Could also be damping of B (Pohl et al., 2005) -> Not consistent with radio morphology in Tycho (Cassam-Chenaï et al., 2007)

Cutoff frequency azimuthal variation

Acceleration seems faster for parallel shocks than for perpendicular ones

Efficient acceleration

Ratio of :

Forward shock->Halpha

Contact discontinuity
->X-ray 0.5-0.8 keV
(tracing shocked ejecta)

Efficient acceleration has modified the shock structure

Indirect evidence of proton acceleration

Cherenkov astronomy

At TeV energies satellite observations no longer possible collecting area and calorimeter depth

Earth's atmosphere as part of the detector -> Imaging atmospheric Cherenkov telescopes (IACT)

Cherenkov flash : faint and short ~ 3ns -> Fast cameras and large mirrors (10m-17m)

5th Korean Astrophysics Workshop

Cherenkov telescopes technique

Cherenkov flash from particle shower observed in telescopes

Stereoscopy allows to reconstruct original γ -ray with a better :

- angular/energy resolution
- background (hadrons) rejection
- sensitivity

5th Korean Astrophysics Workshop

Cherenkov astronomy

Fabio Acero

TeV emitting SNRs

Shell-morphology

Vela Jr, RX J1713-3946, RCW 86 (?), SN 1006

Interacting with molecular clouds

IC 443, W28, W51

Possibility to directly investigate proton acceleration through hadronic process

Cassiopeia A

First SNR discovered in TeV by HEGRA : 5 σ in 232 hrs (!!)

Aharonian et al., 2001

Solution Assuming all TeV emission is leptonic : X/γ flux ratio -> B~100 μ G

Very thin X-ray filament -> B~500 μG

Assuming all TeV emission is hadronic : -> n ~ 1 cm-3

■ MAGIC :TeV spectral index $\Gamma = 2.3 \pm 0.2_{stat}$ Albert et al., 2007

Unique example of cutoff in SNR -> Maximum energy below the knee γ : 18 TeV -> p : ~200 TeV

Thick shell in γ-ray : 48%*R_{SNR} Deprojected and deconvoluted from the PSF

Fabio Acero

Vela Jr Flux (cm⁻².s⁻¹.TeV¹) (bap) -45 Q 120 Vela Junior 10.11 100 -45.5 80 10 -46 60 -46.5 40 10-10 -47 20 10-13 -47.5 Power-law $\Gamma = 2.24 \pm 0.04_{stat}$ **2°** 20 -48 with indication of a cutoff? 10-14 08h50m 09h00m RA (hours) 10 Aharonian et al., 2007b Energy (TeV)

Largest SNR in TeV

RCW 86

Aharonian et al., 2009

Indication of a shell morphology in gamma-rays (Not statistically significant)

 \sim No strong enhancement in γ in the SW interaction region (dense material)

Magnetic field

X/ γ:~30 μG

$$\Gamma = 2.54 \pm 0.12_{stat}$$

SN 1006

- 130h live time observation -> SN 1006 detected !
- Flux ~1% Crab -> one of the faintest VHE source detected
- Similar X-ray/γ-ray bi-polar morphology

Previously unidentified sources

SNR's filament well fitted by an absorbed powerlaw

 \sim X-ray synchrotron emission -> e⁻ accelerated to ~10 TeV

Fabio Acero

5th Korean Astrophysics Workshop

HESS J1731-347 HESS

Radial profiles

*Spatially coincident with radio shell *Indication of shell like morphology Not statistically significant (yet)

Spectral Energy Distribution : Hadronic scenario

 \square Magnetic field = 200 μ G

-> in agreement with X-ray filament

\square High density required : $n \sim 1 \text{ cm}^{-3}$

-> Not in agreement with density measurement : $n < 0.02 \text{ cm}^{-3}$

Caveat : efficient acceleration can decrease thermal emission behind the shock (Drury et al., 2009, Helder et al., 2009)

Spectral Energy Distribution : Leptonic scenario

One zone model :

-One population of e--Uniform magnetic field

Difficult to fit TeV spectral shape in one zone model with only CMB

■ Magnetic field = 14 μ G -> NOT in agreement with filament

BUT ...

Gamma spatially resolved shell

Magnetic field estimate

X-ray filament width — B ~ 200 μG Probed region 2%*R_{SNR}

X/γ-ray flux ratio → B ~ 14 μG Probed region 18%*R_{SNR}

Different emitting X/γ-ray volume

* Decay of the magnetic field on a large scale ? * Hadronic : expect wider shell but not as large ? (See H. Voelk talk)

Interacting SNRs with molecular clouds

Interacting SNRs can probe the hadronic process

Provide high density targets -> n = 10-100 cm⁻³

OH maser can trace this interaction
-> Radio observation at 1720 MHz

For old SNRs, TeV electrons have vanished -> Less confusion leptonic/hadronic process

IC 443

Detection confirmed by VERITAS Γ =2.99±0.38 (Acciari et al., 2009)

Direct coincidence between :

SNR shell + ^{12}CO + OH Maser

Not coincident with the pulsar (white star)

Flattening in the FERMI range Γ =1.9 -> 2.5 ; break at few GeV Rodriguez et al., ICRC 2009 proceeding

Steeper TeV spectrum Γ =3.1±0.3

■ MeV - > GeV -> TeV Γ =1.9 -> 2.5 -> 3.1

W51 / HESS J1923+141

- Extended TeV emission in comparison to the PSF
- FERMI extended emission recently detected
- Other possible counterpart : PWN
- An interesting new candidate

Conclusion

☑ We have entered the TeV-astronomy era

□ X-ray (+GeV) + TeV provide a unique tool to constrain acceleration in SNRs

 \square All TeV SNRs have $\Gamma > 2$; Are we in the cutoff of those SNRs

- -> Difficulties to reach the knee (3000 TeV) in SNRs
- -> Cutoff seen in RX J1713-3946 at 200 TeV

TeV SNR shells are thicker than X-ray shells -> Decay of B in leptonic scenario ?

New candidates in TeV :

Shell : HESS J1731 Interacting SNR : W51

Fabio Acero