5th Korean Astrophysics Workshop 20 November 2009, Pohang, Korea

Gamma-ray Observations of SNRs with Fermi Modified for online post

Yasunobu Uchiyama (Panofsky Fellow of SLAC) on behalf of the Fermi LAT collaboration

Launch!

* June 11, 2008
* Delta II Heavy launch vehicle
* Low-Earth orbit 565 km (96 min period)
* Inclination 25.6 deg

LAT and GBM onboard Fermi

Gamma-ray 20 MeV - 300 GeV

ACD

LAT: 4x4 modular array 3000 kg, 650 W

Large Area Telescope (LAT)

LAT All Sky Map (1 yr)

> 1000 LAT sources

Milky Way (Galactic Cosmic Rays)

Contents

Fermi-LAT Detections of Shell-type SNRs

*** Young SNRs**

- * Cas A
- * RXJ1713.7-3946

Middle-Aged SNRs with Molecular Cloud Interactions

- * W51C
- ***** W44
- * (IC443)
- * (W28)
- ***** (W49B)
- # etc

Cassiopeia A

DISTANCE: 3.4 KPC AGE: 340 YR RADIUS: 2.5 PC Spitzer (IR) Chandra LE X-ray Chandra HE X-ray

REVERSE SHOCK

FORWARD SHOCK (SYNCHROTRON X-RAY)

Cassiopeia A: Variable Filaments

Continuum (4-6 keV) year-scale variability

thermal bremsstrahlung from shock-heated ejecta + **synchrotron** component: knots/filaments brightening/decaying 10%/yr

(Uchiyama & Aharonian 2008) see also Patnaude & Fesen 2009

Chandra Observations in 2000, 2002, and 2004

(Back up) Cas A: Spectra of Variable Filaments

• Synchrotron X-ray Variability:

(Uchiyama & Aharonian 2008; Patnaude & Fesen 2009)

Decaying = Synchrotron Cooling

$$t_{\rm sync} \sim 1.5 \left(\frac{B}{\rm mG}\right)^{-1.5} \left(\frac{\epsilon}{\rm keV}\right)^{-0.5} {\rm year} \longrightarrow B \sim 1 {\rm mG}$$

Brightening = Acceleration of Fresh Electrons

$$t_{\rm acc} \sim 1 \, \eta \left(\frac{B}{\rm mG}\right)^{-1.5} \left(\frac{\epsilon}{\rm keV}\right)^{0.5} \left(\frac{V_s}{3000 \,\,{\rm km \, s^{-1}}}\right)^{-2} \,\,{\rm years} \longrightarrow \begin{array}{c} B \sim 1 \,\,{\rm mG} \\ \eta \sim 1 \end{array}$$
Diffusive shock acceleration
$$\eta \equiv \left(\frac{\delta B}{B}\right)^2$$

"gyro-factor"

Fermi-LAT Detection of Cas A

Fermi-LAT (>0.8 GeV)

VLA radio map

First clear detection of historical SNR The position does not match with CCO (neutron star)

Cas A GeV/TeV Spectrum

(a) Leptonic (Bremsstrahlung + IC)

B = 0.12 mGWe = 1x10⁴⁹ erg (total electron energy content)

(b) Hadronic (π^0 decay)

B > 0.12 mGWp = 5x10⁴⁹ erg (total proton energy content)

B-field amplification

CR content: 2% of ESN

SNR RXJ1713.7-3946: Brightest keV/TeV sources

TeV Gamma: Hadronic or Leptonic origin?

Gamma-ray emission mechanism is under active debate.

SNR RXJ1713.7-3946

Synchrotron X-ray variability : B ≈ 0.1 - 1 mG Uchiyama+2007

X-RAY (ASCA) VS TEV (HESS)

RXJ1713.7-3946: Chandra X-ray Monitoring

SNR expansion with V~4000 km/s

Young SNR!

SNR RXJ1713.7-3946 Fermi LAT Results (Preliminary)

Fermi-LAT (significance map)

LAT + HESS Spectrum

SNR interacting with Molecular Cloud: (1) SNR W51C

- Middle-aged (~ 3×10^4 yr) Distance: ~ 6 kpc
- Radio shell, thermal X-ray (black contours)

The Fermi Source is "Extended"

• Mean surface brightness (2-8 GeV) as a function of distance from the SNR center vs Fermi-LAT PSF (using the energy spectrum obtained with maximum likelihood technique)

SNR W51C CR proton sources are finally found?

Fermi-LAT Spectrum

Molecular cloud interaction enhances π^0 -decay emission

SNR W51C: SED modeling

	Parameters					Energetics	
Model	$a_{\rm e}/a_{\rm p}$	Δs	$p_{\rm br}$ (GeV c^{-1})	Β (μG)	$\frac{\bar{n}_{\rm H}}{({\rm cm}^{-3})}$	$\frac{W_p}{(10^{50} \text{ erg})}$	$\frac{W_e}{(10^{50} \text{ erg})}$
(a) π^0 decay	0.02	1.4	15	40	10	5.2	0.13
(b) Bremsstrahlung	1.0	1.4	5	15	10	0.54	0.87
(c) Inverse Compton	1.0	2.3	20	2	0.1	8.4	11

Notes. Seed photons for IC include the CMB ($kT_{\text{CMB}} = 2.3 \times 10^{-4} \text{ eV}$, $U_{\text{CMB}} = 0.26 \text{ eV cm}^{-3}$), infrared ($kT_{\text{IR}} = 3 \times 10^{-3} \text{ eV}$, $U_{\text{IR}} = 0.90 \text{ eV cm}^{-3}$), and optical ($kT_{\text{opt}} = 0.25 \text{ eV}$, $U_{\text{opt}} = 0.84 \text{ eV cm}^{-3}$). The total energy content of radiating particles, $W_{\text{e,p}}$, is calculated for $p > 10 \text{ MeV } c^{-1}$.

SNR interacting with Molecular Cloud: (2) SNR W44

- Middle-aged (~ 2.0×10^4 yr) Distance: ~ 3 kpc
- Mixed-morphology SNR (radio: shell, thermal X-ray: center filled)

RIGHT ASCENSION (J2000)

VLA 324 MHz

Spitzer 4.5 um

(shocked molecular gas)

Spatial Extension

Smoothed Count Map (> 1GeV)

Profile along SE-NW

Contributions from the diffuse backgrounds and nearby sources are subtracted

Red: Observed Counts Black: Expected Profile for a Point Source

Spatially Extended

Summary

* Young SNRs

- * Cas A
 - Magnetic field: B>0.12mG
 - * CR contents: (1-5)x10⁴⁹ erg
- ***** RXJ1713.7-3946
 - # Hard gamma-ray spectrum

Middle-Aged SNRs with Molecular Cloud Interactions

- * W51C
 - * Large luminosity 1x10³⁶ erg/s
 - * Likely of hadronic origin
 - Spectral steepening (escape? wave damping?)
- ***** W44
 - Similar to W51C
 - Shell-like is suggested