X-ray & Optical Evidence for

Efficient Cosmic Ray Acceleration by Supernova Remnants

Jacco Vink

Utrecht University

SNRs as particle accelerators

- Supernova energy as source for cosmic rays suspected since Baade & Zwicky
- •Early evidence for particle acceleration in SNRs: Radio synchrotron emission
- •Prime example: Cas A
 - young (~330 yr)
 - brightest radio source
 - radio flux decreases 1%/yr
 - explanation: adiabatic losses (Shklovksy '66)
 - suggests acceleration stronger in the past

X-ray imaging/spectroscopy TeV gamma-ray astronomy (Chandra/XMM/Suzaku)

8 m class optical telescopes

(Object: RCW 86, Vink+ '06, Aharonian+ '09, Helder+ '09)

Evidence for efficient acceleration

- 1. Direct observations of accelerated particles
 - •Electrons:
 - synchrotron radiation (10⁷Hz- 10¹⁸ Hz)
 - inverse Compton (IC) scattering (GeV/TeV γ-rays)
 - bremsstrahlung (keV- TeV)
 - Ions: pion-decay (GeV/TeV γ-rays)
 - Identification of pion decay or IC not always clear!
- 2.Indirect evidence:
 - •Magnetic field amplification (20- 500µG)
 - •High compression ratios (> 4)
 - Concave synchrotron spectra
 - Lower than expected plasma temperatures
 - Evidence for shock precursors (Ha)

X-ray synchrotron & B-field amplification

X-ray synchrotron radiation

•One expects X-ray synchrotron emission only from young sources (i.e. high shock velocities), for loss limited case:

$$h\nu_{cutt\,off} \approx 0.55 \left(\frac{V_s}{3000\,{\rm km\,s^{-1}}}\right)^2 \eta^{-1} \,{\rm keV}$$

(Zirakashvili & Aharonian '07)

- • $\eta > 1$ (=1 for Bohm-diffusion)
- Formula assumes loss limited maximum energy
- •Note: maximum photon energy independent of magnetic field
- Hence: lower magnetic field →larger electron energy (but may be the reverse for protons!)

Interpreting narrow X-ray rims

- Rim widths determined by interplay of diffusion/advection and synchrotron losses
- •Rim width can be used to measure B-field: B \approx 110 (L/10¹⁷cm)^{-2/3} µG
- •Cas A/Tycho/Kepler: ~100-500 μG (e.g. Vink&Laming 03, Berezhko&Voelk 03, Warren+ '05)
- High B-field ⇒fast acceleration

Interpreting narrow X-ray rims

- Rim widths determined by interplay of diffusion/advection and synchrotron losses
- •Rim width can be used to measure B-field: B \approx 110 (L/10¹⁷cm)^{-2/3} µG
- •Cas A/Tycho/Kepler: ~100-500 μG (e.g. Vink&Laming 03, Berezhko&Voelk 03, Warren+ '05)
- High B-field ⇒fast acceleration

High B-field likely induced by cosmic rays (e.g. Bell +04)
High B-fields are a signature of ion cosmic rays

Magnetic Field Amplification

There is a clear correlation between ρ, V and B, in rough agreement with theoretical predictions (e.g. Bell 2004)
Relation may even extend to supernovae (B² ∝ ρV_s³ ?) (Völk et al. '05, Vink '08)

Magnetic Field Amplification

There is a clear correlation between ρ, V and B, in rough agreement with theoretical predictions (e.g. Bell 2004)
Relation may even extend to supernovae (B² ∝ ρV_s³ ?) (Völk et al. '05, Vink '08)

Cas A

- •Strong continuum filaments (green) from inner region
- Temporal brightness fluctuations (t~few year)
 - acceleration/loss time?
 (Uchiyama+08, Patnaude+09)
 B-field turbulence?

(Bykov+ 08)

Hwang+ 2004

Hard X-ray Emission

The+ '96, Allen+ '97, Favata+ '97, Vink+ '01, Vink & Laming '03

- •Data best described by power law Γ=3.2
- Expected synchrotron steepening not seen
- Speculation:
 - •non-thermal bremsstrahlung? (Vink '08, see also Laming's talk)
 - •B-field turbulence smoothing out cut-offs?

- •Data best described by power law Γ=3.2
- Expected synchrotron steepening not seen
- Speculation:
 - •non-thermal bremsstrahlung? (Vink '08, see also Laming's talk)
 - •B-field turbulence smoothing out cut-offs?

Helder&Vink '08 Uchiyama+ '08

Helder&Vink '08 Uchiyama+ '08

Helder&Vink '08 Uchiyama+ '08

Final amplified B-field insensitive to initial field!?

Helder&Vink '08 Uchiyama+ '08

Curved spectra

- •Non-linear shock acceleration predicts curve spectra
- Curvature reported for radio spectra (Ellison+ 92), radio-infrared (Cas A, T.J. Jones+ 03), and radio to X-ray (Vink +06, Allen +08)
- Comparing radio to X-ray spectra: use a region near shock: otherwise sample old (cooled) and new electron populations
 Never published, radio / X-ray for NE of Cas A:

High Compression Ratios

- If acceleration is very efficient CRs dominate internal energy
- •If r < 2 cosmic ray energy losses become dynamically important
- Shock compression ratios become >4
- •No losses: 4-7
- With losses > 7
- •X-ray evidence in Tycho:
 Ejecta in Tycho's SNR too close to shock front
 →need high compression ratio!
 •SN1006: effect seen as well
 - (even outside X-ray synchrotron rims)

(Decourchelle&Ellison '01, Warren+ '05, Cassasm-Chenai+ '08)

Charge X-change/Ha emission

Thermal X-ray

Charge X-change/Ha emission

Shock heating and compression

RCW86 NE X-ray synchrotron & Ha

•RCW 86 is ideal for measuring kTp in presence of CRs:

- NE shows X-ray synchrotron emission
- RCW 86 is a TeV source
- Is a source of Hα emission

RCW 86 NE Ha measurements

•Broad line width : 1100 ± 63 km/s \Rightarrow kT_p = 2.2 keV

Helder+ 09

Shock proper motion

- •Proper motion: (1.5±0.3)"/3yr (error largely systematic)
- $V_s = (5900 \pm 1200) d_{2.5} \text{ km/s}$
- •Expected $kT_p = 43 98 \text{ keV}$
- •Ratio expected to observed temperature: 0.06 0.03

Cosmic Ray Acceleration Efficiency

Helder+ 09

Cosmic Ray Acceleration Efficiency

- Close to equilibration!
- Low n_et -> low density
- •Electron pre-heating in pre-cursor?

5th Korean Astrophysics Workshop, Shock Waves Turbulence & Particle Acceleration (Nov. 20, '09)

5th Korean Astrophysics Workshop, Shock Waves Turbulence & Particle Acceleration (Nov. 20, '09)

5th Korean Astrophysics Workshop, Shock Waves Turbulence & Particle Acceleration (Nov. 20, '09)

Probing the pre-cursor with Ha

Dreaming on:

- Face on the Ha is very faint.
 Broad component hard to detect
 → Need EELT?
- No narrow line splitting seen in LMC remnants (Smith+ '96)
- Ideally need a large set of SNRs with different np, Vs, etc.

Some other Ha results

- Salvesen+ '09 observations of Cygnus Loop (Vs~200 km/s): kT measurement consistent with no CR acceleration
- Lee+ '09 observations of Tycho knot g: Narrow Ha emission ahead of shock front, seem hotter closer to shock
 → shock precursor heating?

Some other Ha results

- Salvesen+ '09 observations of Cygnus Loop (Vs~200 km/s): kT measurement consistent with no CR acceleration
- Lee+ '09 observations of Tycho knot g: Narrow Ha emission ahead of shock front, seem hotter closer to shock
 - →shock precursor heating?

Jacco Vink X-ray & Optical Evide See presentation by J. J. Lee 5th Korean Astrophysics Workshop, Snock Waves Turbulence & Particle Acceleration (Nov. 20, '09)

Conclusions

- •A lot has been accomplished in last 10-15 yr:
 - X-ray synchrotron emission indicates $E_e > 10 \text{ TeV}$
 - Narrow filaments X-ray filaments indicate B-fields up to 600µG
 - (TeV emission points to particle acceleration > 10 TeV)
- Indirect signs of presence of CRs:
 - B-field amplification
 - High shock compression ratios
 - Lower than expected plasma temperatures
- •Many remaining questions:
 - •when is CR acc. most important: <100 yr, Sedov, superbubbles?
 - related: in RCW 86 efficient acc. in Cygnus Loop not: what happens in between? (similar conclusion from radio polarization)
- •Future work:
 - •Accurate determination of Vs and X-ray synchrotron $\rightarrow \eta$
 - probe cosmic ray precursor with Ha emission

