Current Issues Associated with Particle Acceleration in the Heliosphere: Shocks and Stochastic Acceleration

Marty Lee

USA

- "Hot" and "Cold" Seed Particle Populations
- Magnetic Obliquity
- Wave Excitation by Accelerating Protons
- Ion Fractionation
- Power-law Index: Observations Versus Theory
- Varying Magnetic Obliquity Within an Event
- Geometry: Earth's Bow Shock & Solar Wind Termination Shock
- Nonlinear Waves & SLAMS
- Remnant Suprathermal Ions

Planar Stationary SA - I

Planar Stationary SA - II

- "Hot" and "Cold" Seed Particle Populations
- Magnetic Obliquity
- Wave Excitation by Accelerating Protons
- Ion Fractionation
- Power-law Index: Observations Versus Theory
- Varying Magnetic Obliquity Within an Event
- Geometry: Earth's Bow Shock & Solar Wind Termination Shock
- Nonlinear Waves & SLAMS
- Remnant Suprathermal Ions

Example Event: 1999 / 47-49 (Cold Seeds)

Density compression: $\rho_{\text{d}}/\rho_{\text{u}}$ ~ 2.9

Clear proton foreshock of appropriate scale.

Softening particle spectra on the same ESP scale.

Particle intensity index appropriate to shock strength.

Small proton anisotropy.

Wave foreshock appropriate scale.

Argued and confirmed to be cold ion seed population leading to shock acceleration.

Example Event: 1998 / 217-219 (Hot Seeds)

Density compression: $\rho_d / \rho_u \sim 1.8$

<u>Very modest or questionable</u> proton foreshock if SEP event is properly recognized.

Softening particle spectra on SEP scale.

Moderate proton anisotropy.

Nonexistent wave foreshock.

Argued and confirmed to be hot ion seed population leading to shock acceleration.

- "Hot" and "Cold" Seed Particle Populations
- Magnetic Obliquity
- Wave Excitation by Accelerating Protons
- Ion Fractionation
- Power-law Index: Observations Versus Theory
- Varying Magnetic Obliquity Within an Event
- Geometry: Earth's Bow Shock & Solar Wind Termination Shock
- Nonlinear Waves & SLAMS
- Remnant Suprathermal Ions

Wave Excitation - I

$$-V\partial I_{\pm}/\partial z = 2\gamma_{\pm}I_{\pm}$$

$$I \cong I_{+} = I_{+}^{\square}(k) + \frac{4\pi^{2}}{k^{2}} \frac{V_{A}}{V} / \Omega_{p} / m_{p} \cos \psi \int_{\Omega_{p}/k}^{\infty} dv v^{3} (1 - \frac{\Omega_{p}^{2}}{k^{2}v^{2}}) (f_{p} - f_{p,\infty})$$

$$f_{p,\infty} = \overline{n}_p (4\pi v_{p,0}^2)^{-1} \,\delta(v - v_{p,0}) + \overline{C} v^{-\gamma} S(v - \overline{v}_{p,0})$$

Wave Excitation - II

$$I = I_{+}^{\square} + \frac{4\pi^2 V_A}{k^2 V_A} / \Omega_p / m_p \cos \psi \int_{\Omega_p/k}^{\infty} dv v^3 (1 - \frac{\Omega_p^2}{k^2 v^2}) \cdot$$

$$\cdot \exp\left\{-V\int_{0}^{z} dz \left[\cos^{2}\psi \frac{v^{3}}{4\pi} \frac{B_{0}^{2}}{\Omega_{p}^{2}}\int_{-1}^{1} d\mu \frac{/\mu/(1-\mu^{2})}{I(\Omega_{p}\mu^{-1}v^{-1})} + \sin^{2}\psi K_{\perp}\right]^{-1}\right\}$$

Wave Excitation - III

 $\beta = 7; I_0(k) \approx 0$

- "Hot" and "Cold" Seed Particle Populations
- Magnetic Obliquity
- Wave Excitation by Accelerating Protons
- Ion Fractionation
- Power-law Index: Observations Versus Theory
- Varying Magnetic Obliquity Within an Event
- Geometry: Earth's Bow Shock & Solar Wind Termination Shock
- Nonlinear Waves & SLAMS
- Remnant Suprathermal Ions

Ion Fractionation

Tylka et al., 1999

Fe and O Time Profiles

Mason et al., 2006

- "Hot" and "Cold" Seed Particle Populations
- Magnetic Obliquity
- Wave Excitation by Accelerating Protons
- Ion Fractionation
- Power-law Index: Observations Versus Theory
- Varying Magnetic Obliquity Within an Event
- Geometry: Earth's Bow Shock & Solar Wind Termination Shock
- Nonlinear Waves & SLAMS
- Remnant Suprathermal Ions

Complications within DSA

Wave-frame compression ratio:

Van Nes et al., 1984

- "Hot" and "Cold" Seed Particle Populations
- Magnetic Obliquity
- Wave Excitation by Accelerating Protons
- Ion Fractionation
- Power-law Index: Observations Versus Theory
- Varying Magnetic Obliquity Within an Event
- Geometry: Earth's Bow Shock & Solar Wind Termination Shock
- Nonlinear Waves & SLAMS
- Remnant Suprathermal Ions

Fe/O Versus Energy

Tylka et al., 2005

A Simple Model for Composition

$$\overline{F}_{i,flare}(E) = C_{i,flare} E^{-\gamma} \int_{\xi_{min}}^{\xi_{max}} \exp(-E\xi^{2/(2\gamma-1)}/\check{E}_{0i,flare})d\xi / \int_{\xi_{min}}^{\xi_{max}} d\xi$$

$$\overline{F}_{i,coronal}(E) = C_{i,coronal} E^{-\gamma} \int_{\xi_{min}}^{\xi_{max}} \underbrace{\xi } \exp(-E\xi^{2/(2\gamma-1)}/\check{E}_{0i,coronal})d\xi / \int_{\xi_{min}}^{\xi_{max}} d\xi,$$

Tylka and Lee, 2006

Fe/O Versus Energy

Tylka and Lee, 2006

- "Hot" and "Cold" Seed Particle Populations
- Magnetic Obliquity
- Wave Excitation by Accelerating Protons
- Ion Fractionation
- Power-law Index: Observations Versus Theory
- Varying Magnetic Obliquity Within an Event
- Geometry: Earth's Bow Shock & Solar Wind Termination Shock
- Nonlinear Waves & SLAMS
- Remnant Suprathermal Ions

The Blunt Termination Shock

McComas and Schwadron, 2006

Stone et al., 2008

13:20 - 13:30 UT, February 18, 2003

Kis et al., 2007

- "Hot" and "Cold" Seed Particle Populations
- Magnetic Obliquity
- Wave Excitation by Accelerating Protons
- Ion Fractionation
- Power-law Index: Observations Versus Theory
- Varying Magnetic Obliquity Within an Event
- Geometry: Earth's Bow Shock & Solar Wind Termination Shock
- Nonlinear Waves & SLAMS
- Remnant Suprathermal Ions

Upstream Waves

Hoppe et al., 1981

SLAMS

Lucek et al., 2008

Growth of a SLAMS

$$\left(V_{sw} - \frac{B}{B_0}V_A\right)\frac{dB^2}{dz} = C\left(1 - \frac{B_0}{B}\right)\frac{B}{B_0}V_A \exp\left(\frac{z}{L}\right)$$

- "Hot" and "Cold" Seed Particle Populations
- Magnetic Obliquity
- Wave Excitation by Accelerating Protons
- Ion Fractionation
- Power-law Index: Observations Versus Theory
- Varying Magnetic Obliquity Within an Event
- Geometry: Earth's Bow Shock & Solar Wind Termination Shock
- Nonlinear Waves & SLAMS
- Remnant Suprathermal Ions

Ubiquitous Suprathermals

Fisk and Gloeckler, 2006

Contours of $\nabla \cdot \mathbf{V} > 0$ and $< \mathbf{0}$

Compressive Acceleration

Stochastic Compressions and Rarefactions - I

$$\frac{\partial f}{\partial t} + (\mathbf{V} + \mathbf{V}_D) \cdot \nabla f - \nabla \cdot \mathbf{K} \cdot \nabla f - \frac{1}{3} \nabla \cdot \mathbf{V} v \frac{\partial f}{\partial v} = 0$$
$$\frac{\partial f_0}{\partial t} - \frac{1}{3} \frac{1}{v^2} \frac{\partial}{\partial v} \left\langle (\nabla \cdot \delta \mathbf{V}) v^3 \delta f \right\rangle = 0$$
$$\frac{\partial \delta f}{\partial t} - \nabla \cdot \mathbf{K} \cdot \nabla \delta f - \frac{1}{3} (\nabla \cdot \delta \mathbf{V}) v \frac{\partial f_0}{\partial v} = 0$$

Ptuskin, 1988; Jokipii et al., 2003; Webb et al., 2003; Fisk and Gloeckler, 2008

Stochastic Compressions and Rarefactions - II

$$\frac{\partial f_0}{\partial t} = \frac{1}{v^2} \frac{\partial}{\partial v} \left\{ \frac{v^4}{9} \int_{-\infty}^{\infty} d^3 \mathbf{x}' \int_{-\infty}^{t} dt' G(\mathbf{x}, t; \mathbf{x}', t') \left\langle (\nabla \cdot \delta \mathbf{V}) (\nabla' \cdot \delta \mathbf{V}') \right\rangle \frac{\partial f_0(v, t)}{\partial v} \right\}$$

$$G(\mathbf{x}, t; \mathbf{x}', t') = [4 \pi K (t - t')]^{-3/2} \exp\{-|\mathbf{x} - \mathbf{x}'|^2 [4 K (t - t')]^{-1}\}$$

$$\frac{\partial f_0}{\partial t} = \frac{1}{v^2} \frac{\partial}{\partial v} \left[v^2 D \frac{\partial f_0}{\partial v} \right]$$

Power-law solutions?

Stochastic Compressions and Rarefactions - III

$$\frac{\partial G}{\partial \tau} = \frac{1}{v^2} \frac{\partial}{\partial v} \left[v^{\alpha} \frac{\partial G}{\partial v} \right] + \frac{1}{4\pi} \delta(v-1) \delta(\tau)$$

$$G = \frac{v^{(1-\alpha)/2}}{|4-\alpha|4\pi\tau} I_{\pm p} \left[\frac{2v^{(4-\alpha)/2}}{(4-\alpha)^2\tau} \right] \exp \left[-\frac{1+v^{4-\alpha}}{(4-\alpha)^2\tau} \right]$$

$$p = (1 - \alpha) / (4 - \alpha)$$

Jokipii and Lee, current

Schematic Plots of Solutions

Stochastic Compressions and Rarefactions - IV

$$\frac{\partial f_0}{\partial t} = \frac{1}{v^2} \frac{\partial}{\partial v} \left\{ \frac{v^4}{9} \int_{-\infty}^{\infty} d^3 \mathbf{x}' \int_{-\infty}^{t} dt' G(\mathbf{x}, t; \mathbf{x}', t') \langle (\nabla \cdot \partial \mathbf{V}) (\nabla' \cdot \partial \mathbf{V}') \rangle \frac{\partial f_0(v, t)}{\partial v} \right\}$$

$$\langle (\nabla \cdot \partial \mathbf{V}) (\nabla' \cdot \partial \mathbf{V}') \rangle = \left\langle (\nabla \cdot \partial \mathbf{V})^2 \right\rangle \exp\left[-||\mathbf{x} - \mathbf{x}'|^2 \lambda^{-2} - (t - t')T^{-1} \right]$$

$$T << \lambda^2 / (4K): \quad D = \frac{v^2}{9} \left\langle (\nabla \cdot \partial \mathbf{V})^2 \right\rangle T \qquad \alpha = 4$$

$$T >> \lambda^2 / (4K): \quad D = \frac{v^2}{9} \left\langle (\nabla \cdot \partial \mathbf{V})^2 \right\rangle \frac{\lambda^2}{2K} \qquad \alpha < 4$$