Turbulence and Magnetic Field Amplification in SNRs

TI, Yamasaki & Inutsuka 2009, ApJ, 695, 825

Tsuyoshi Inoue (NAOJ)

Ryo Yamazaki (Hiroshima Univ.) Shu-ichiro Inutsuka (Nagoya Univ.)

Introduction: Strong MF at SNR

Recent X-ray observation discovered Strong MF (~ 1mG) in SNRs

(Uchiyama+ 07, Uchiyama & Aharonian 08)

There are synchrotron X-ray hot spots that blink on a timescale of a few years In RXJ1713.7-3946 and CasA.

Synchrotron cooling time:

$$t_{\text{synch}} \approx 1.5 \left(\frac{B}{mG}\right)^{-1.5} \left(\frac{\varepsilon}{keV}\right)^{-0.5} \text{ year}$$

X-ray image of RXJ1713.7-3946.

(Uchiyama+ 07)

→ Decrease of X-ray luminosity within a few years indicates $B \sim 1 \text{mG} (200 \times B_{\text{ISM}}).$

Magnetic Field Amplification

- Some mechanisms are proposed that can amplify *B* filed at shock.
- Widely studied ideas are nonthermal processes, e.g., CR streaming instability (Lucek & Bell 00) and Weibel instability.
- Another idea is dynamo effect caused by the interaction between shock and preshock ρ fluctuations (Giacalone & Jokipii 07; Beresnyac+09).

✓ Source of vorticity: Baroclinic effect.

$$\frac{\partial \vec{\omega}}{\partial t} = \vec{\nabla} \times (\vec{v} \times \vec{\omega}) + \frac{1}{\rho^2} \vec{\nabla} \rho \times \vec{\nabla} p + \vec{\nabla} \times \vec{F}_{\text{Lorentz}}$$

 \checkmark The strength of *B* amplification depend on the amplitude of ρ fluctuations.

 \checkmark Compressions by interstellar turbulence is usually assumed as ρ fluctuations.

Cloud as a ρ Fluctuation

In ISM, large ρ fluctuations can be expected around molecular clouds.

• In the case of RXJ1713.7-3946., the SNR is surrounded by molecular clouds.

Gray scale: X-ray image by XMM-Newton (Hiraga+05)

Contour: CO(J=1-0) intensity by NANTEN (Fukui+03, Moriguchi+05)

Molecular cloud and SNR is interacting!

 \rightarrow It is natural to assume that ambient ρ structure is highly inhomogeneous in some SNR.

Formation of Clouds

- In order to study SNR formed from cloudy ISM, information about clouds structure is necessary.
- In ISM, thermal instability (cooling collapse) is known as the formation mechanism of clouds (Field 65).
- ISM is thermally bistable medium due to the balance of radiative cooling and heating (Field+69).
- Diffuse gas and clouds can coexist under pressure equilibrium.

 Recent numerical simulations have shown that shock waves in ISM (e.g., SNe/stellar wind/global turbulence) generate thermally unstable gas that leads formation of clouds by thermal instability.

(Hennebelle & Audit 07, TI & Inutsuka 08,09)

Formation of Clouds by 2D MHD Simulation

In order to generate cloudy medium formed by thermal instability as a preshock ISM, we perform 2D MHD simulation.

• Basic MHD eqs.:
$$\frac{\partial \rho}{\partial t} + \nabla(\rho v) = 0$$
 $\rho \frac{dv}{dt} = -\nabla p + \frac{1}{4\pi} (\nabla \times B) \times B$,
 $\frac{\partial B}{\partial t} = \nabla \times (v \times B), \quad \frac{\gamma}{\gamma - 1} \frac{dp}{dt} + \frac{p \nabla \cdot v}{\gamma - 1} = \nabla \cdot \kappa \nabla T - \rho \mathcal{L}(n, T).$
Thermal conduction Heating/cooling fuction

• Initial condition: thermally unstable equilibrium + *B* filed ($Bx=6\mu G$, By=0).

Results:

Diffuse warm gas : $n \sim 1 \text{ cm}^{-3}$, T ~ 8000 K HI clouds : $n \sim 30 \text{ cm}^{-3}$, T ~ 100 K

- Condensations driven by thermal instability form clouds by piling up gas along *B* field.
- Scale of HI clouds are determined by scale of thermal instability.
- Molecular clouds are generally surrounded by HI clouds (Blitz+07).
 - → This medium corresponds to ambient surrounding of molecular cloud

Settings of Simulation

To examine SNR formed from the cloudy ISM, we induce shock wave at a boundary of computational domain.

```
    We set the hot plasma (n=0.1 cm<sup>-3</sup>)
at one side of computational boundary.
```

• The thermal pressure of the hot plasma is chosen so that the velocity of the induced shock becomes ~ 1300 km/s.

• We examine the cases of para. and perp. shocks by setting the hot plasma at x=0 and y=0, respectively.

• Effects of cooling/heating/thermal conduction are cut off from here, since timescales of them >> timescale of SNR formation.

Formation of SNR by 2D Simulation

 \blacksquare Case 1: Perpendicular shock (v_{shock} ~ 1300~km/s).

Number Density

Magnetic Field Strength

• In some regions, *B* field is strongly amplified to the level of 1 mG.

• The regions of high *B* are located between clouds and diffuse gas.

Formation of SNR by 2D Simulation

Case 2: Parallel shock ($v_{shock} \sim 1300 \text{ km/s}$).

Number Density

y [pc]

Magnetic Field Strength

000 yr

Time =

• *B* field amplification appears independent of preshock *B* orientation.

Evolution of Maximum B and β

Maximum B strength saturate at $B \sim 1 \text{ mG}$.

- Average *B* in the shell also grow beyond the shock compression value.
- Maximum *B* strength is determined by the condition $\beta \sim 1$.

3D Simulation

In MHD, geometric difference between 2D and 3D could lead different result.

However, preliminary result of 3D simulation done under the similar conditions to the 2D case show that strong B amplification is indeed work.

TI, Yamazaki & Inutsuka in progress.

3D simulation with 512³ cells

Mechanism of *B* amplification

Mechanism of strong B field amplification by cloud-shock interaction.

• Eq. of continuity and induction eq. yield:

$$\frac{d}{dt}\left(\frac{\vec{B}}{\rho}\right) = \frac{1}{\rho}\left(\vec{B}\cdot\vec{\nabla}\right)\vec{v}.$$
 $\rightarrow B$ is amplified if velocity filed has shear along B filed line.

Strong velocity shear is generated when clouds are swept by the shock.

 v_{shock} in cloud << v_{shock} in diffuse gas (Δv_{shear} ~ Cs in post shock)

- \rightarrow post shock gas flows to round HI cloud.
- → The largest velocity shear is induced at transition layer between cloud and diffuse gas.

The scale of high *B* region is essentially determined by the Scale of the transition layer $l \sim \sqrt{\frac{\rho L}{\kappa T}} \sim 0.05$ pc (TI+06)

Perp. shock case

Secondary Shocks in SNR

Can post shock turbulence contribute particle acceleration?

- Downstream *B* filed amplification alone cannot contribute acceleration.
- However, many secondary shock waves are formed in SNR shell, due to the turbulent flow ($\langle \delta v \rangle = 0.8 C_s$ in SNR shell ~ v_{shock}).

The secondary shocks formed in the shell may enhance particle acceleration.

Summary

- SNR formed from cloudy medium becomes turbulent.
- Velocity shear along B line induced by shock-cloud interaction amplifies B at transition layer between cloud and diffuse gas.
- **B** strength grows to the order of 1 mG ($\beta \sim 1$).
- Scale of the regions where B is on the oreder of 1 mG is 0.05 pc, which agrees well with the scale of X-ray hot spots.
- The scale 0.05 pc is determined by the scale of transition layer between cloud and surrounding diffuse gas at which velocity shear is most strongly induced.
- The turbulent flows in the post shock shell ($\langle \delta v \rangle \sim v_{shock} \sim C_s$ in shell) generate the secondary shocks that can enhance particle acceleration.

Spectra

Spectra of v and B in the shell resemble those of super-Alfvenic turbulence. (e.g., Cho & Lazarian 03)

- v spectrum: Kolmogorov spectrum ($v_k \propto k^{-q}$, q=11/3 for 3D, 8/3 for 2D)
- B spectrum: Shallower than the Kolmogorov in large scales.

Steeper than the Kolmogorov in small scales.

