Self-Similar Evolution of Cosmic-Ray Modified Shocks

base on DSA simulations

Hyesung Kang Pusan National University, KOREA T. W. Jones University of Minnesota, USA Dongsu Ryu Chungnam National University, KOREA

Basic Equations for Kinetic DSA Simulations

Diffusion Convection Eq. for isotropic part of f(x,p,t)

$$\frac{\partial f}{\partial t} + (u \qquad)\frac{\partial f}{\partial r} = \frac{1}{3}\frac{\partial}{\partial x}(u \qquad) \cdot p\frac{\partial f}{\partial p} + \frac{\partial}{\partial x}[\kappa(x,p)\frac{\partial f}{\partial x}] + Q(x,p)$$

$$P_{c} = \frac{4}{3}\pi m_{p}c^{2}\int_{0}^{\infty} f(p) \frac{p^{4}dp}{\sqrt{p^{2}+1}}$$

L= thermal energy loss due to injection, Q= CR injection

Simple models for wave-particle interactions

$$\frac{\partial f}{\partial t} + (u + u_w) \frac{\partial f}{\partial x} = \frac{1}{3} \frac{\partial}{\partial x} [(u + u_w)] p \frac{\partial f}{\partial p} + \frac{\partial}{\partial x} [\kappa(x, p) \frac{\partial f}{\partial x}] + Q(x, p)$$

 1) u_w ≈ -v_A = -B₀ / √4πρ(x) in upstream, u_w ≈ 0 in downstream, velocity jump: Δu = u₁ - u₂ → Δu = u₁ - v_A - u₂ smaller
 steepens CR spectrum & reduces acceleration efficiency
 2) κ(x, p) = κ^{*} p(ρ / ρ₀)⁻¹ : Bohm - like power - law δB ~ B₀ & compression of field
 3) Q(x, p) = thermal leakage injection

$$\frac{\partial(\rho e_g)}{\partial t} + \frac{\partial}{\partial x}(\rho e_g u + P_g u) = -u\frac{\partial P_c}{\partial x} + W - L$$
$$W(x,t) \approx -v_A \frac{\partial P_c}{\partial x}: \text{ wave disspation \& gas heating in precursor}$$

Weakens the shock & reduces acceleration efficiency

Hyesung Kang

Numerical Model for Thermal Leakage Injection in CRASH

 $\tau_{esc}(\varepsilon_B, M)$: filter function

"Transparency function": probability that particles at a given velocity can leak upstream. e.g. $\tau_{esc} = 1$ for CRs

$$u_d(M) = \text{downstream flow speed}$$

 $\varepsilon_B = \frac{B_0}{B_\perp} = \frac{\text{mean field}}{\text{turbulent field}}$

$$p_{inj} \approx (1 + \frac{1.07}{\varepsilon_B}) m_p u_d$$

more turbulent B_{\perp} \rightarrow smaller ε_{B}

 \rightarrow larger p_{inj}

 \rightarrow smaller injection rate

Numerical Tool: CRASH Code (Kang et al. 2001)

Bohm type diffusion: $\kappa(p) \propto p$

- wide range of diffusion length scales to be resolved $l_{diff} = \kappa(p) / u_s$

from $p_{inj}/mc(\sim 10^{-2})$ to outer scales for the highest p_{max}/mc (~10⁶)

1) Shock Tracking Method (Le Veque & Shyue 1995)

- tracks the subshock as an exact discontinuity
- 2) Adaptive Mesh Refinement (Berger & Le Veque 1997)
 - refines region around the subshock with multi-level grids

acceleration time scale, precursor length scale, ...

for
$$\kappa(p) = \kappa^* p(\rho_0 / \rho) \propto p$$
, where p in units of $m_p c$
mean accel. time : $t_{acc}(p) \approx \frac{3}{u_1 - u_2} (\frac{\kappa_1(p)}{u_1} + \frac{\kappa_2(p)}{u_2}) \approx 8 \frac{\kappa^* p}{u_s^2}$ for $M >> 1$
 $p_{\max} \approx \frac{u_s^2}{8\kappa^*} \cdot t$ at a given shock age
in an evolving CR shock with ever increasing p_{\max} (t) (no escaping condition),
precursor scale : $\sim l_{\max} = \frac{\kappa(p_{\max})}{u_s} \approx \frac{1}{8} u_s t$ diffusion length of p_{\max}
increases with $t \Rightarrow \xi \equiv \frac{x}{u_{s,i}t}$ similarity variable
So the shock structure broadens linearly with time independent of κ^* .
smaller $\kappa^* \rightarrow$ higher p_{\max} at a given shock age.
But hydrodynamic structure is independent of κ^* .

Hyesung Kang

*Minor differences are due to numerical problems.

DSA Kinetic Simulation for M=3 shock

Evolution of weak shocks is almost test-particle. No modification to the shock flow.

$$q(p) = \frac{d \ln f(p)}{d \ln p} \approx \frac{3[u(x_p) - v_A]}{[u(x_p) - v_A - u_2]} \quad \text{where } x_p = \frac{\kappa(p)}{u_s},$$
$$u(x_p): \text{ velocity profile in the precursor}$$

Test-particle slope for weak shocks

$$q_{test} = \frac{3(u_1 - v_A)}{(u_1 - v_A - u_2)} = \frac{3(1 - M_A^{-1})}{(1 - M_A^{-1} - \sigma_s^{-1})}$$
where $M_A = \frac{u_1}{v_A}$, $\sigma_s = \frac{u_1}{u_2}$

$$\theta = \frac{E_B}{E_{th}} = \frac{8\pi/B^2}{1.5(P/\rho)}$$
for $\theta = 0.1$, $M_A = \sqrt{\frac{5}{9\theta}}M_0 = 2.36M_0$

important for weak shocks (e.g. shocks in the ICM)

Wave drift steepens CR spectrum & reduces acceleration efficiency

Slope of test-particle spectrum

Test-particle spectrum for weak shocks

$$f_{test}(p,t) = f_{th}(p_{inj}) (p / p_{inj})^{-q_{test}} \exp[-(p / 1.5 p_{max})^{2}]$$

$$p_{th} = m_{p} v_{th} = 2\sqrt{km_{p}T_{2}}$$

$$p_{inj} / p_{th} = R_{inj} \approx 2.5 - 2.7$$

$$q_{test} = \frac{3(u_1 - v_A)}{(u_1 - v_A - u_2)}$$

$$f_{th}(p_{inj}) = \frac{n_2}{(2\pi T_2)^{1.5}} \exp(-2R_{inj}^2)$$
 Maxwell distribution

Hyesung Kang

Test-particle spectrum for weak shocks

$$f_{test}(p,t) = f_{th}(p_{inj}) (p / p_{inj})^{-q_{test}} \exp[-(p / 1.5 p_{max})^{2}]$$

injection model 1) $p_{inj} / p_{th} = R_{inj} \approx 2.5 - 2.7$ (e.g. Blasi)

2)
$$p_{inj} / m_p u_d \approx (1 + \frac{1.07}{\varepsilon_B})$$
 (e.g. KJ)

For weak shocks M<4, test-particle approximations is valid. Wave drift reduces the CR acceleration efficiency

Hyesung Kang

How does a CR shock evolve ?

A gasdynamic shock in plane-parallel geometry is a self-similarly evolving structure.

initial state: M=10 gasdynamic shock with Pc=0

CRs are injected at shocks
→Accelerated to higher E.
→ Pc increases,
Pg decreases,

 \rightarrow precursor develops

Q: Does the shock reach an equilibrium state with ever increasing p_{max} ?

DSA Kinetic Simulation for M=10 shock

DSA Kinetic Simulation for M=10 shock

-Precursor compression, subshock transition, and postshock Pc evolve to *selfconsistent* dynamical equilibrium states.

-The shock structure broadens linearly with time.

- CRs are injected at subshock and accelerated to higher pmax, but they are also advected downstream and diffuse further upstream.

 $\int E_c dx \propto (\rho_0 u_s^3) \cdot t$

CR spectrum during the Self-similar stage for M=10 shock

Why CR modified shocks become self-similar ?

Hyesung Kang

How to combine the two formulae for weak and strong shocks ?

linear approximation for velocity profile in the precursor

$$u_{p} \approx u_{0} + (u_{1} - u_{0}) \frac{\ln(p/p_{max})}{\ln(p_{min}/p_{max})} \Rightarrow q(p) \approx \frac{3(u_{p} - v_{A})}{(u_{p} - v_{A} - u_{2})}$$

$$\Rightarrow f(p) \approx f_{th}(p_{inj}) \exp[-\int_{\ln p_{min}} q(p)d \ln p] \cdot \exp[-(p/1.5p_{max})^{2}]$$

$$q(p) = \frac{d \ln f(p)}{d \ln p} : q(p_{min}) = q_{s}, \quad q(p_{max}) = q_{t}$$
This analytic approximation can be used for both weak and strong shocks
$$q(p) = \frac{d \ln f(p)}{d \ln p} : q(p_{min}) = q_{s}, \quad q(p_{max}) = q_{t}$$

$$q(p) = \frac{d \ln f(p)}{d \ln p} : q(p_{min}) = q_{s}, \quad q(p_{max}) = q_{t}$$

$$q(p) = \frac{d \ln f(p)}{d \ln p} : q(p_{min}) = q_{s}, \quad q(p_{max}) = q_{t}$$

$$q(p) = \frac{d \ln f(p)}{d \ln p} : q(p_{min}) = q_{s}, \quad q(p_{max}) = q_{t}$$

$$q(p) = \frac{d \ln f(p)}{d \ln p} : q(p_{min}) = q_{s}, \quad q(p_{max}) = q_{t}$$

$$q(p) = \frac{d \ln f(p)}{d \ln p} : q(p_{min}) = q_{s}, \quad q(p_{max}) = q_{t}$$

$$q(p) = \frac{d \ln f(p)}{d \ln p} : q(p_{min}) = q_{s}, \quad q(p_{max}) = q_{t}$$

$$q(p) = \frac{d \ln f(p)}{d \ln p} : q(p_{min}) = q_{s}, \quad q(p_{max}) = q_{t}$$

$$q(p) = \frac{d \ln f(p)}{d \ln p} : q(p_{min}) = q_{s}, \quad q(p_{max}) = q_{t}$$

$$q(p) = \frac{d \ln f(p)}{d \ln p} : q(p_{min}) = q_{s}, \quad q(p_{max}) = q_{t}$$

$$q(p) = \frac{d \ln f(p)}{d \ln p} : q(p_{min}) = q_{s}, \quad q(p_{max}) = q_{t}$$

$$q(p) = \frac{d \ln f(p)}{d \ln p} : q(p_{min}) = q_{s}, \quad q(p_{max}) = q_{t}$$

$$q(p) = \frac{d \ln f(p)}{d \ln p} : q(p_{min}) = q_{s}, \quad q(p_{max}) = q_{t}$$

$$q(p) = \frac{d \ln f(p)}{d \ln p} : q(p_{min}) = q_{s}, \quad q(p_{max}) = q_{t}$$

$$q(p) = \frac{d \ln f(p)}{d \ln p} : q(p_{min}) = q_{s}, \quad q(p_{max}) = q_{t}$$

$$q(p) = \frac{d \ln f(p)}{d \ln p} : q(p_{min}) = q_{s}, \quad q(p_{max}) = q_{t}$$

$$q(p) = \frac{d \ln f(p)}{d \ln p} : q(p_{min}) = q_{s}, \quad q(p_{max}) = q_{t}$$

$$q(p) = \frac{d \ln f(p)}{d \ln p} : q(p_{min}) = q_{t}$$

$$q(p) = \frac{d \ln f(p)}{d \ln p} : q(p_{min}) = q_{t}, \quad q(p_{max}) = q_{t}$$

$$q(p) = \frac{d \ln f(p)}{d \ln p} : q(p_{min}) = q_{t}, \quad q(p_{min}) = q_{t}$$

$$q(p) = \frac{d \ln f(p)}{d \ln p} : q(p_{min}) = q_{t}, \quad q(p_{min}) = q_{t}$$

$$q(p) = \frac{d \ln f(p)}{d \ln p} : q(p_{min}) = q_{t}, \quad q(p_{min}) = q_{t}$$

$$q(p) = \frac{d \ln f(p)}{d \ln p} : q(p_{min}) = q_{t}, \quad q(p_{min}) = q_{t}$$

$$q(p) = \frac{d \ln f(p)}{d \ln p} : q(p_{min}) = q_{t}, \quad q(p_{min}) = q_{t}$$

$$q(p) = \frac{d \ln f($$

$$\frac{P_{c,2}}{\rho_0 u_s^2} \approx 0.5 \text{ for } M_0 \ge 20$$

These solutions depend on details of the models for injection, wave generation, drift, and dissipation models, especially for weak shocks.

SUMMARY

- In evolving CR modified plane shocks even with ever increasing p_{max} , the precursor & subshock transition approach time-asymptotic states.

 $P_{g,2}$, $P_{c,2}$, $\sigma_t = \rho_2 / \rho_0$, $\sigma_s = \rho_2 / \rho_1 \rightarrow \text{constant}$

- Then precursor/shock structure evolves in a self-similar fashion, depending only on similarity variable, $\xi = x/(u_s t)$.

- Wave drift increases the power-law slope from canonical testparticle values and reduces the CR acceleration efficiency.

Wave dissipation (heating of gas) in the precursor also reduce the CR acceleration efficiency.

→ total compression is $\sigma_{tot} = R_{tot} \approx 5(M/10)^{1/3} < 10$

(even with escaping particles, or with fixed p_{max})

- CR acceleration may not be "too efficient".

time-dependent solution and steady-state solution with the same pmax are the same.

Steady state solution is achieved by setting a upper momentum boundary at $p_{ub} = 10^5$ (blue solid lines) Precursor becomes steady. Highest energy particles escape 0.5 through the upper momentum boundary.

Time-dependent solution at t=1, $4 \rightarrow p_{max}(t) \approx 10^5$ (red dashed lines) Precursor broadens as pmax increases with time.

Falle & Giddings, 1987, numerical DSA simulations

Figure 5. Shock structure in the steady state for a piston Mach number $M_p=2.0$ and upstream state $P_G=1.0$, $P_C=0$, $\rho=1.0$, f=0. The injection rate $\varepsilon=0.009$ and the injection momentum $p_1=0.01m_pc$. $\varkappa \propto p^{1/4}/\rho$. *m* is the Lagrangian coordinate defined by $dm=\rho dx$.

a piston (M_p=2.0) driven shock.

with $\kappa \propto p^{1/4} \rho^{-1}$

fixed injection rate

Pc increases, Pg decreases, Pc/Pg → constant in time. The shock reaches a steady state. During this self-similar stage, the CR distribution at the subshock maintains a characteristic form.

analytic approximation for CR spectrum at the shock

$$f(p,t) \approx f_{th}(p_{inj}) \exp\left[-\int_{\ln p_{min}} q(p) d\ln p\right] \cdot \exp\left[-\left(\frac{p}{1.5p_{max}(t)}\right)^2\right]$$

where
$$q(p) \approx \frac{3(u_p - v_A)}{(u_p - v_A - u_2)}, u_p \approx u_0 + (u_1 - u_0) \frac{\ln(p / p_{\text{max}})}{\ln(p_{\text{min}} / p_{\text{max}})}, p_{\text{max}}(t) \approx \frac{u_s^2}{8\kappa_n} \cdot t$$

For weak shocks in test-particle limit this recovers

$$f_{test}(p,t) = f_{th}(p_{inj}) (p / p_{inj})^{-q_{test}} \exp[-(p / 1.5 p_{max})^2]$$

providing that we know the time asymptotic states:

$$P_{g,2}, P_{c,2}, \rho_2, u_1, u_2$$

DSA kinetic simulation for M=10 shock: Early Evolution

Initial conditions at t=0 $M_0=10$ gasdynamic shock No pre-existing CRs $\epsilon_B=0.2, \theta=0.1$ $\kappa(p)=10^{-6}p(\rho/\rho_0)^{-1}$

$$\theta = \frac{E_B}{E_{th}}, \ \frac{\upsilon_A}{c_s} = \frac{M_0}{M_A} = \sqrt{\frac{9\theta}{5}}$$

Hyesung Kang