Hybrid Simulations of Particle
Acceleration at Shocks
(or, the injection problem)

Joe Giacalone and J.R. Jokipii
University of Arizona

* In this talk, we will focus on the problem of accelerating low-
energy and/or thermal particles by shock, which is not generally
described by the diffusive transport equation

« Self-consistent plasma simulations can be used to study particle
acceleration from thermal energies to energies that are generally
considered to be acceptably treated by the diffusive transport
equation

« This work is relevant to our understanding of the role of the
magnetic-field angle in shock acceleration
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Quantitative predictions of Diffusive Shock
Acceleration are obtained by solving the
cosmic-ray transport equation
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his equation is valid if scattering is sufficient to
drive the angular distribution to near-isotropy.
Hence, it can apply to energetic partices at
shocks.



* The steady-state solution to Parker’s equation at a planar shock
at x = 0, for an infinite system, is given by

f(z,p)

where Y = 3U1/(U1 — UQ)

The downstream distribution is power law B
with a spectral index that depends only on
the shock compression ratio (nearly
universal spectral index).
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The observed energy spectra of cosmic rays are

remarkably similar everywhere they are observed.

ooo All Particles

= _
o
= B
+ (=]
2 &
3 %
L —10 %J
~
= =)
B q”%ﬂ KNEE
=
= =9
5 .
~ —20
o
o
o]
—
—30 r.=10"%cm
9 | | 1
5 10 15 20
Log|[T(eV)]
Mason, et al, 2002
ot . S
- 3I"e Speclra —e— Event &2
- —=— Event #3
—+— Event #4
iy —a— Event #6
(]
= -
‘e —s— Event #9
=3 —a— Event #11
> —r— Event #12
© Event #13
E Event #14
=
o 4
T
©
~—
(]
Q
=
2 10° L Normalized at ]
i 1.1 MeV/nucleon
10°
0 1 10
MeV/nucleon
Fi6. 10.—Spectra of *He of events 2-9 and 11-14 in Table 1, normalized to a fluence of 10*at 1.1 MeV nucleon !

Galaxy

: MeV/Nucleon)

cm SSr

Particles (

Sun:
Impulsive
Solar Flares

Particles per (om? s5r MeV per nucleor)

g & IMP 8 Protons

- &x GOES 7 Protons
F O GOES 7 Alphas
E' m GOES 6 Alphas
- 1

1
100

1 10 1000 10
Energy, MeV/Nuc

10° = T T — 5=
= ~ o » 3

B =~ Modal i

| — ~ —

107 = ~ Rg~86AU,r~23 3
= ~ 3

r e RN T

10" = @1 ~ =
£ [ S 3

10° = —a— S o ~E-15 _
E [ N E

C [ o e ~ .

107" = —=
£ — o E

C ki = m

102 = (=] 101 -
= HH 3

C H I

100 = [ HH o =
= e H E

E o CHHGY 3

—4 = %‘ pAnal =
1 e E
C [ I

100 = @§ b =
F|lo H = b 3

106 L | ® Z=21 bt 3
E | m,0 He E
EFlo ¢ Mot

107 = | a,~ O =
2 L Ll Ll P | P
10 10! 10° 10! 10?2

Energy per nucleon (MeV)

Sun:
CMEs

ACR



The maximum energy

* The energy is limited by both the
size and age of the system

 Acceleration takes time. The ideal
power-law energy spectrum is not
created instantly.

Parallel shocks = slow
Perpendicular shocks - fast f

 The maximum energy over a given
time interval strongly depends on
the shock-normal angle

for any given situation, a
perpendicular shock will yield a
larger maximum energy than a
parallel shock.
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Acceleration Rate as a Function of Shock-Normal Angle:
(assumes the billiard-ball approximation)

The acceleration rate
depends inversely on oL
the diffusion coefficient 5
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FiG. 1.—Plot of the ratio of energy gain rate with a transverse magnetic field to that neglecting the magnetic field given in eq. (8), as a_funclion of angle bel_ween
the upstream magnetic field and shock normal, 8,. The upper curve is for a scattering mean free path A equal to 100 times the gyroradius r,, and the lower is for

Jokipii, 1987

)1“ = 10!".

The perpendicular diffusion may be different from that used above, but,

ingeneral, k| << K|



Acceleration at low energies:
The injection problem: Particles must have
speeds greater than the shock speed to be
accurately described by Parker’s equation

J(w)

w = W, Diffusive
W = W, Non-Diffusive

Super-thermal tail

Maxwellian

Power-law
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Diffusive shock acceleration at highly
oblique shocks

* An often-invoked injection criterion is
Uing =~ U, seclp,

 This is incorrect since it assumes that there is
NO motion normal the average magnetic field.

* |t has led to a widely held misconception that

perpendicular shocks are inefficient accelerators
of particles.



* |n general, particles move
normal to magnetic fields.

— Field-line random walk
leads to a much larger
diffusion coefficient that
expected from hard-sphere
scattering.

— Numerical simulations
show that 1 /K| is large
and nearly independent of
energy.

* The injection criterion
must include
perpendicular diffusion.
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Because the distribution should be nearly isotropic, we
require that the diffusive streaming anisotropy 0; be small.

This is the criterion for the validity of the Parker equation

The general expression for the pitch angle anisotropy
upstream of a shock, using the solution derived above, is:
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Special Cases of the general limit:

Case 1. Weak Scattering (1| > K4, k1)

3UisecOg,

U

<1

Case 2. Parallel Shock (6, — 0)

3U
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(V)

Case 3. Perpendicular Shock (65, — 90°)
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Test-particle simulations of particle diffusion coefficients
using synthesized magnetic turbulence.

At low energies, perpendicular transport is dominated by
field-line random walk.
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The case of field-line random walk

Thus, for a perpendicular shock, we find

o 2791/2

K1

™~ 3U1
—> The same as for a parallel shock.

Injection is NOT more difficult for
perpendicular shocks!



Test-particle simulations show a fairly weak
dependence of the injection threshold on magnetic-
field angle

 The shock moves through
a plasma with a magnetic
field composed of a mean
plus a random component
derived from an assumed
power spectrum (AB/B ~ 1)

1/L, 1/rg

Assumed power spectrum
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dJ
dE

More results from test-particle simulations

Effect of Turbulence Amplitude
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Self-consistent hybrid simulations

* To better handle the physics

of acceleration from near-
thermal energies, we need a
self-consistent treatment

The hybrid simulation treats
the ions kinetically and the
electrons as a massless fluid

— Used to study the structure of
collisionless shocks, as well as
the acceleration of thermal ions
to high energies.
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Numerical considerations for high-energy particles

Must improve statistics at high energies, by incorporating
particle splitting

Must use large simulation domains because:

)\|| =>> c/wp

It takes time to generate the fluctuations that scatter the
high-energy particles. It is often necessary to put them in at
the start of the simulation

|deally we would like to do 3D to overcome a restriction on
particle motion normal to the field (tied to field lines)

— hard to do!




Hybrid simulation of the energy spectrum downstream of a parallel shock
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Parallel Shock
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The Magnetic-Field Angle and Hybrid
Simulations

* The previous simulations showing high-energy
particles accelerated directly from thermal
energies were for guasi-parallel shocks

« Until recently, it has been thought that quasi-
perpendicular shocks were not efficient
accelerators.

* Recent hybrid simulations have also shown
efficient acceleration for perpendicular shocks,
but it is found that the size of the simulation
domain is very important to be able to
demostrate this.




First 3D hybrid simulations of perpendicular shocks to
study injection/acceleration of thermal particles.

Without Seed Waves With Seed Waves

|| Maxwell-Bolzmann i

Flux, dJ/dE (arbitrary units)

distribution
0.,1 , .,,1 . ..:...1..0 .
Energy, ((1/2)mU5) Box: 150 x 10 x 10 c/w,

No significant acceleration

Giacalone and Ellison, 2000



Effect of Simulation Dimensions
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New 2D Hybrid Simulations

«  We have performed large 2D simulations (500 x 4000 ¢/w; )
to investigate the effect of long-wavelength magnetic
fluctuations on the acceleration of thermal ions at a
perpendicular shock.

« “Seed’ or pre-existing upstream magnetic fluctuations are
Imposed on the system.

 Particles are tied to field lines, but move normal to the mean
field by following meandering lines of force “partial”
perpendicular diffusion
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Individual Particle Trajectories

30

20

E/E

P

10

0
1600

1400
1200 [

z (¢c/my)

800

600
-600-400-200 O 200 400

P T A T T R

1000 f

X (c/m))

30

20
E/E, |

10

N
J\a i\ H Mb J ”

Qt



Effect of:

Domain Size
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Direct observational tests ?

 Earth’s Bow shock

— Not a good test because it is too

small compared to the |.M.F.
coherence scale

* Interplanetary shocks

— difficult to unravel time
dependence in source
population, shock evolution

 Bow shocks of outer planets

— Possibly, but only a few
encounters

o Solar-wind termination shock
— Yes, but only 2 crossings
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Voyager Observations of Energetic lons
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¥E) (particles/cm *-sec-MeV-sr)

Downstream Energy Spectra
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Conclusions

Shocks moving into a plasma with large-scale magnetic
turbulence accelerate low-energy particles with high
efficiency. There is not a significant injection problem.

Perpendicular shocks readily accelerate low-energy
particles, perhaps even as efficiently as parallel shocks.

Perpendicular shocks have a higher rate of acceleration.
— for a given time to accelerate particles, the highest

energy ones originate from regions on the shock that
are nearly perpendicular to the average mag. field



