Particle Acceleration and Magnetic Field Generation in Relativistic Perpendicular Shock

> Masahiro Hoshino University of Tokyo

Luminous Sources in Perpendicular Shock

- Pulsar-wind nebulae may have a relativistic perpendicular shock
- Diffusion across B line is difficult, implying no DSA

Strong Turbulence near Shock Front by Weibel Instability

If $\sigma < 10^{-2}$ -10⁻³, strong turbulence may exist...

But, if $\sigma > 10^{-2}$ -10⁻³, acceleration in perp-shock??

Monte-Carlo Simulation of Diffusive Shock Acceleration

Subluminal shock

MC simulation suggests variety of particle spectra in Fermi acceleration

Superluminal shock

Acceleration is not effective

Plasma Dynamics in Relativistic Perpendicular Shock

So far no standard model for particle acceleration in perpendicular shock....

Possible models may be

- Shock Surfing Acceleration
- Cyclotron Resonant Acceleration
- Wakefield Acceleration

& Magnetic Field Amplification

Precursor Wave in Relativistic Shock

Chen et al. PRL 2003, Lyubursky ApJ 2007, MH ApJ 2008

Ponderomotive Force in Precursor Wave

Incoherent Wakefield Acceleration

Tajima & Dawson, PRL (1979) (confirmed in laboratory laser plasma experiments)

Energy Spectra in Shock Simulation

$$\epsilon_{max}/\epsilon_0$$
 > M_i/m_e (=50)

1)
$$\gamma_i m_i c^2 \approx \gamma_e m_e c^2$$

2)
$$\gamma_e m_e c^2 >> \gamma_1 m_i c^2$$

Accelerated electron energy is more than upstream ion bulk flow energy

Energy Spectra in 2D Wakefield

Laboratory Experiment of Incoherent Wakefield Acceleration by an Intensive Laser Pulse

GEKKO XII Laser Plasma Experiment

Kuramitsu et al. submitted (2009)

B Field Generation in Precursor

Wave Spectrum

Anisotropic Electron f(V)

