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Is there a radiative signature?

Magneto-brems., diffuse synchrotron, jitter...

Incoherent (single particle) radiation determined by trajectory

γ−1

(at t = T1/γ)

Fundamental concept: formation time T :

Classically: time for particle to lag ∼ 1 wavelength behind

wavefront

QM: time needed to create photon

Formation length can be large: T = 2γ2c/ω, for T < T1/γ



Idealized scatterer

Strength parameter: a = λeB/mc2 (δθ = 2a/γ)

B
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Magnetized: a ∼ γ̄ Unmagnetized: a ∼ γ̄σ1/2

Spectrum: a≫ 1

Fields constant over a formation length

Can define a local emissivity

‘Synchrotron’ radiation (independent of whether E or B is

responsible)

Integrated over angle, low frequency spectrum is ω1/3,

because:
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ω < γωp RT effect

Two kinds of radiation:

a = 1log (a) →

Jitter
Synchrotron



1st order Fermi process

Average field orientation: B‖ = B′
‖, B⊥ = ΓshockB

′
⊥.

-100 -50 0

-10

-5

0

5

10

-60 -40 -20 0 20

-10

-5

0

5

10

-50 0

-10

0

10

Short-wavelength

turbulence needed

(a < γ̄)

1st order Fermi process

Average field orientation: B‖ = B′
‖, B⊥ = ΓshockB

′
⊥.

-100 -50 0

-10

-5

0

5

10

-60 -40 -20 0 20

-10

-5

0

5

10

-50 0

-10

0

10

Particle overtaken in

small fraction of

a gyration

Short-wavelength

turbulence needed

(a < γ̄)

1st order Fermi process

Average field orientation: B‖ = B′
‖, B⊥ = ΓshockB

′
⊥.

-100 -50 0

-10

-5

0

5

10

-60 -40 -20 0 20

-10

-5

0

5

10

-50 0

-10

0

10

Particle overtaken in

small fraction of

a gyration

Short-wavelength

turbulence needed

(a < γ̄)

Two kinds of transport:

a = 1log (a) →

Jitter
Synchrotron

Two kinds of transport:

a = 1 a = γlog (a) →

Ballistic

Helical

Jitter
Synchrotron

Maximum energy, maximum frequency

Random small-angle deflections:

∆θ = 2a/γ (∝ B)

Number of scatterings needed to isotropize:

Nscatt ≈ (π/∆θ)2

Energy loss per scattering:

∆γ/γ = 2αfabγ/3 ∝ B2

(b = B/Bcrit = B/(4.4× 1013 G))
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Acceleration/confinement, requires isotropization rate

faster than energy loss rate:

Nscatt∆γ/γ < 1

⇒ γ < acrit

=

(
3mc2λ

2e2

)1/3

= 106
(
n/1 cm−3

)−1/6

Adding constraint in the helical regime:

γmax =


acrit for a < acrit
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Maximum energy, maximum frequency

Maximum energy of radiated photon (co-moving frame):
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Two kinds of scatterers?

Isotropization (large λ, small B) and radiation (small λ, large B)

by different scatterers?

Define

λlosses =

〈
B2λ

〉〈
B2

〉
λ−2
isotrop =

〈
1

B2λ2

〉〈
B2

〉
Maximum energy increased if λisotrop ≫ λlosses:

~ωmax → (
λisotrop/λlosses

)4/3 ~ωmax
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Summary

Two radiation regimes: a < 1 (jitter), a > 1 (synchrotron)

Two transport regimes: a < γ (ballistic), a > γ (helical)

1st order Fermi at relativistic shocks requires ballistic

transport, a < γ

Associated synchrotron/jitter radiation is in optical/UV

independent of B (but νmax ∝ density1/6)

Restriction relaxed if two populations of scatterers exist

(e.g., transport via Weibel fluctuations, radiation from

inverse Compton scattering)
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