Turbulence in Collisionless Shocks & Fermi Acceleration Efficiency focus: relativistic shock case

A.Marcowith (L.P.T.A) Montpellier France Collaborators F.Casse (APC), M.Lemoine (IAP), G.Pelletier (LAOG)

Outlines

- Conditions on turbulence properties for Fermi cycle in *relativistic shocks*
- Streaming instabilities in the magnetohydrodynamic (MHD) limit
- Instabilities beyond MHD
- Conclusions.

Magnetic field amplification

Observations: $\epsilon_{\rm B}$ = $B^2/4\pi\rho v_{\rm sh}^2$

Supernova Remnants

- X-ray filaments: $\varepsilon_{\rm B} = 10^{-2/-1}$
- Gamma-Ray radiation:
 Hwang et al'02
 E_{max}~100 TeV
 Abaronian et al'08

~ 2.2

GRB	ϵ_e	ϵ_B (%)	
970508 980329 980703 000926	$\begin{array}{c} 0.342\substack{+0.008\\-0.01}\\ 0.12\substack{+0.02\\-0.02}\\ 0.27\substack{+0.03\\-0.03}\\ 0.15\substack{+0.01\\-0.01}\end{array}$	$\begin{array}{c} 25.0^{+0.6}_{-2} \\ 17^{+3}_{-3} \\ 0.18^{+0.04}_{-0.03} \\ 2.2^{+0.5}_{-0.6} \end{array}$	∎ €

Gamma-Ray
bursts
NT radiation:
energy indices

Theory:

Streaming instabilities:

$$\varepsilon_{\rm B} = (V_{\rm sh}/c)\varepsilon_{\rm CR} = 10^{-2/-1}$$

Bell & Lucek'01, Bell'04,
Pelletier et al'06 ...
⇒ Relativistic GRB shocks

Milosavljevic & Nakar'06, Reville et al'06

• Strong impact of the upstream magnetisation

 $\sigma{=}B^{2/4}\pi\rho c^{2}$ = 10^{-6/-12} in the ISM

Yost et al'03

5th Korean Astrophysics Workshop

Fermi cycles in relativistic shocks with a mean magnetic field

- * Only a mean regular field
- In the front rest-frame the magnetic field is perpendicular.
- Kinematic conditions for Fermi cycles (d=>u=>d):
 - Return d -> u possible if and only if $-\pi < \phi_d(i) < 0$ but for all $\phi_u(i)$, $0 < \phi'_d(i) < \pi =>$ return impossible: correlated trajectories !
- Limitation to 1-1/2 Fermi cycle in a regular field.
- ⇒ Turbulence is mandatory to mix the phase angles and allow further cycles. ⇒ Coherence length sh-frame $l_{coh-sh} < r_{L-sh}$ Coherence length up-frame $l_{coh-u} \Gamma_{sh} < r_{L-u}$

Niemiec & Ostrowski'06 Lemoine et al'06

5th Korean Astrophysics Workshop

General turbulence properties

- Turbulence level $A=\delta B/B_{reg}$; $B_{tot} = (B_{reg}^2+\delta B^2)^{1/2}$
- Condition on A (up- & downstream): Pelletier, Lemoine & A.M. al'09

$$A > \frac{r_L}{\Gamma_{sh} \ell_{coh}} > 1$$

N.B.
$$r_{L} = E/ZeB_{tot}$$

- Strong turbulence is required. A denotes the dynamical range of particle energies.
- Conditions on l_{coh} (MHD instabilities):

$$\ell_{MHD} < \ell_{coh} < \ell_{prec-u}$$

Pelletier, Lemoine & A.M. al'09 $l_{MHD} = (V_{a-reg}/c) r_{0-reg}$ $l_{prec-u} = precursor size upstream$

5th Korean Astrophysics Workshop

Streaming instability: MHD regime

• Linear analysis in the MHD limit.

Pelletier, Lemoine & A.M. al'09

- Top-hat CR charge distribution over $l_{CR} =>$ counter charge in the background plasma.
- Destabilisation of: Alfvèn waves: $\delta B \perp B_{\rm reg}$ and Magneto-sonic waves δB // $B_{\rm reg}$
- Driving term: w=ρ_uc²

$$u'_{z} = \frac{du_{z}}{dx} = \frac{1}{1 + \beta_{A}^{2}} \left(\frac{\rho_{CR} B_{reg}}{\Gamma_{sh} w} \right)$$

<u>In the limit $\Gamma_{sh} >>1$:</u> Alfvén waves are found to be stable

Ms waves are destabilised ≠ modes Bell analysis

6

Magnetosonic mode properties

 Spatial growth rates: G_x increase with k_{*}

$$G_{x} = \frac{\sqrt{3}}{2} \left(k_{*}^{2} k_{x} \right)^{1/3}; k_{x} \gg k_{*}, k_{y} \approx 0$$

$$G_{x} = \left(k_{*} k_{y} \right)^{1/2}; k_{y} \gg k_{*}^{1/3} k_{x}^{2/3}$$

- Typical wave number: $k_* \sim u_z'/c\Gamma_{sh}$ verifies: $k_*l_{MHD} << 1$ and $k_*l_{CR} >>1$: small scale turbulence
- In the linear limit: $\delta B/B_{reg} \sim 1$ do not allow more than 1 1/2 Fermi cycle.
- If higher CR energies are present:

 -G_xl_{CR,*} scales as p^{b+a(1-s)}, Usually b+a(1-s) > 0; hence increases with p
 s index of the particle distribution, a=1/3 or 2/3 and b=2 for small scale turbulence.
 - k_*l_{MHD} scales as $p^{(1-s)}$; hence decreases with p as s > 1.

Perspectives

- These MS waves are important in many aspects !
 - $G_x l_{CR}$ increases with p: efficient contribution of HE CRs to the MHD instabilities.
 - In the non-linear regime:
 - They can couple with Alfvèn waves if large scale turbulence is present (Pelletier, Lemoine & A.M.'06)
 - They can produce secondary MS shocks $\delta \rho / \rho_0 > 1$. Further heating and magnetic compression in the precursor. Contribute to a shock front corrugation instability (Casse & A.M. in prep).
- Non-linear simulations undertaken with an R-MHD code AMR-VAC [van der Holst et al'08], Casse & A.M. in prep.
- But concerning the init of the Fermi cycles instabilities beyond MHD are required => mediation of the shock structure, particle scattering and allow Fermi cycles.

Microscopic instabilities

- PIC simulations: Shock is formed once two counter flows interact (Nishikawa et al'07, Spitkovsky'05)
- Shock: electrostatic or magnetic barrier that reflect incoming cold ions => relativistic cold beam in the upstream frame => micro-instabilities.
 - * With a mean magnetic field (Lemoine & Pelletier'09)
 - Superluminal case
 - Longitudinal modes (k//B)
 - Whistler modes (k has a component // v_{beam}) ($\omega_{ci} << \omega << \omega_{ce}$)

 - Alfvén modes (k // B)
 - Weibel filamentation modes (k \perp v_{beam}, k \perp B) ($\omega_{ci} << \omega << \omega_{ce}$) => non resonant.
 - Subluminal case:
 - + Streaming instability (Bell type modes) in the quasi-parallel configuration.

Instability diagrams

⇒ Longitudinal & oblique modes have the fastest growth rates ⇒ Main limiting factor $G_x l_{cr} >> 1$: instability quenched by advection in the superluminal case.

 \Rightarrow Resonant modes: normal modes. If advected downstream => B_{down} .

Conclusions

- Necessary conditions for *Fermi cycles* in relativistic flows:
 - High level of turbulence
 - Small scale fluctuations $(l_c \ll r_L)$
- MHD instabilities:
 - Only magnetosonic waves are destabilised by the CR streaming.
 - Saturation at $\delta B/B \sim 1$ (not enough to permit Fermi cycles).
 - Non-linear investigation is mandatory.
- Beyond MHD:
 - Magnetisation select the dominant instability.
 - Usually longitudinal & oblique modes grow the faster.
 - Resonant modes are important to be transmitted downstream.
- Important point: the structure of a relativistic shock is not understood:
 - Importance of compressive modes (MHD, extraordinary ionic) as heating agent of the precursor => if both p⁺ / e⁻ are heated => e⁺/e⁻ plasma (Weibel is the dominant mode: