Nonlinear Gyrokinetic Description of Alfvénic Turbulence

T.S. HAHM

Princeton Univ, Plasma Physics Laboratory

Nov 18, 2009, 5th Korean Astrophysics Workshop

Outline

Introduction

- Gyrokinetics and Polarization Density
- Alfvén Eigenmodes in Tokamaks
- Weak Turbulence Theory of Toroidal Alfvén Eigenmodes
- Relations to MHD Turbulence

Basics of Shear- Alfvén Waves

$$\delta E_{\parallel} = 0 \qquad \Longrightarrow \frac{1}{c} \partial_t \delta A_{\parallel} = -\nabla_{\parallel} \delta \phi$$

ideal MHD

From $\vec{\nabla} \cdot \vec{\delta} J = 0 \implies \frac{m_i n_0 c}{B^2} \partial_t \nabla_\perp^2 \delta \phi = \nabla_\parallel J_\parallel = \nabla_\parallel \nabla_\perp^2 \delta A_\parallel$

$$\mathbf{v}_{\mathrm{A}}^{-2}\boldsymbol{\omega}^{2} = k_{\parallel}^{2}$$

MHD : from
$$\vec{\nabla} \times$$
 of $\rho \frac{d}{dt} \vec{v} = \vec{J} \times \vec{B}$
i.e. "Vorticity "

Gyrokinetics : "Polarization Density "

$$n_{\rm pol} = \nabla_{\perp} \bullet \left(\frac{m_i n_0 c}{B^2} \nabla_{\perp} \delta \phi \right)$$

Ref. Hahm-Lee-Brizard, Phys Fluids '88

Vorticity Equation can be derived from

- What is Physical Meaning of Polarization Density?
- What is Gyrokinetics?

Conventional (old-fashioned) Derivation of Non-linear Gyrokinetic Equation

- Closely follow Guiding Center transformation by P.J. Catto, Plasma Phys. **20**, 719 (1977)
- Resulting equation Frieman and Chen, PF **25**, 502 (1982)
 - Lee, PF **26** 556 (1983)
- Purpose: illustrate basic physics and mathematical complexity involved in this conventional method.

Consider uniform $\mathbf{B} = B\hat{\mathbf{b}}$ to emphasize nonlinear effects

• Goal: from

$$\left[\frac{\partial}{\partial t} + \mathbf{v} \cdot \frac{\partial}{\partial \mathbf{x}} + \frac{q}{m} \left(\mathbf{E} + \frac{1}{c}\mathbf{v} \times \mathbf{B}\right) \cdot \frac{\partial}{\partial \mathbf{v}}\right] f(\mathbf{x}, \mathbf{v}, t) = 0 \quad \text{6D Vlasov Eqn}$$

get

$$\left(\frac{\partial}{\partial t} + \frac{d\mathbf{R}}{dt} \cdot \frac{\partial}{\partial \mathbf{R}} + \frac{dv_{\parallel}}{dt} \frac{\partial}{\partial v_{\parallel}}\right) \langle f \rangle(\mathbf{R}, \mu, v_{\parallel}, t) = 0 \quad \text{5D GK Eqn}$$

with

$$\frac{d\mu}{dt} = 0 \text{ and } \frac{\partial}{\partial\theta} \langle f \rangle = 0$$

 $\mu \simeq v_{\perp}^2/(2B)$: magnetic moment, an adiabatic invariant at lowest order • Assumption:

 $-\omega \ll \Omega_{ci}$ - $k_{\parallel} \ll k_{\perp} \sim \rho_i^{-1}$ - $\delta f / f_0 \sim \delta n / n_0 \sim e \delta \phi / T_e \ll 1$

Guiding Center Transformation à la Catto

$$\begin{aligned} (\mathbf{x}, \mathbf{v}) &\to (\mathbf{R}, \mathbf{v}_{\parallel}, \mu, \theta), \theta : \text{gyrophase-angle} \\ \mathbf{R} &= \mathbf{x} - \rho, \rho = \frac{\hat{\mathbf{b}} \times \mathbf{v}}{\Omega}, \Omega = \frac{eB}{mc} \\ v_{\parallel} &= \hat{\mathbf{b}} \cdot \mathbf{v}, \mu = v_{\perp}^2 / (2B) \\ \theta \text{ defined by} \\ \begin{cases} \mathbf{v} &= v_{\parallel} \hat{\mathbf{b}} + v_{\perp} \hat{\mathbf{e}}_{\perp} \\ \hat{e}_{\perp} &= -\hat{\mathbf{e}}_2 \cos \theta - \hat{\mathbf{e}}_1 \sin \theta \\ \hat{\mathbf{e}}_{\rho} &= \hat{\mathbf{e}}_1 \cos \theta - \hat{\mathbf{e}}_2 \sin \theta \end{cases} \\ \end{aligned}$$

Note that for uniform **B**,

$$d^{3}\mathbf{x}d^{3}\mathbf{v} = \mathbf{b} d\mu d\theta dv_{\parallel} d^{3}\mathbf{R}$$

B : "phase-space volume"

Then, we would like to express $\frac{\partial}{\partial \mathbf{x}}$ and $\frac{\partial}{\partial \mathbf{v}}$ in G.C. space i.e., in terms of $\mu, v_{\parallel}, \mathbf{R}$, and θ ;

$$\frac{\partial}{\partial \mathbf{x}} = \frac{\partial \mathbf{R}}{\partial \mathbf{x}} \cdot \frac{\partial}{\partial \mathbf{R}} + \frac{\partial \mu}{\partial \mathbf{x}} \frac{\partial}{\partial \mu} + \frac{\partial v_{\parallel}}{\partial \mathbf{x}} \frac{\partial}{\partial v_{\parallel}} + \frac{\partial \theta}{\partial \mathbf{x}} \cdot \frac{\partial}{\partial \theta}$$
$$\frac{\partial}{\partial \mathbf{v}} = \frac{\partial \mathbf{R}}{\partial \mathbf{v}} \cdot \frac{\partial}{\partial \mathbf{R}} + \frac{\partial \mu}{\partial \mathbf{v}} \frac{\partial}{\partial \mu} + \frac{\partial v_{\parallel}}{\partial \mathbf{v}} \frac{\partial}{\partial v_{\parallel}} + \frac{\partial \theta}{\partial \mathbf{v}} \cdot \frac{\partial}{\partial \theta}$$

 \rightarrow important to check what quantities are held constant when taking partial derivatives

Since

$$\frac{\partial}{\partial \mathbf{x}} \mu \Big|_{\mathbf{v}=\mathbf{const}} = 0, \frac{\partial}{\partial \mathbf{x}} v_{\parallel} \Big|_{\mathbf{v}=\mathbf{const}} = 0, \frac{\partial}{\partial \mathbf{x}} \Big|_{\mathbf{v}=\mathbf{const}} \theta = 0, \text{ and } \mathbf{R} = \mathbf{x} - \frac{\hat{\mathbf{b}} \times \mathbf{v}}{\Omega}$$

 $\frac{\partial}{\partial \mathbf{x}} \rightarrow$ only the 1st term on the R.H.S. survives \Rightarrow

$$\frac{\partial}{\partial \mathbf{x}} = \mathbf{I} \cdot \frac{\partial}{\partial \mathbf{R}} = \frac{\partial}{\partial \mathbf{R}}$$

Also, noting that

 \Rightarrow

$$\frac{\partial}{\partial \mathbf{v}} \bigg|_{\mathbf{x}=\text{const}} v_{\parallel} = \frac{\partial}{\partial \mathbf{v}} \bigg|_{\mathbf{x}=\text{const}} \mathbf{v} \cdot \hat{\mathbf{b}} = \hat{\mathbf{b}}, \quad \frac{\partial}{\partial \mathbf{v}} \mu = \mathbf{v}_{\perp} / B$$
$$\frac{\partial}{\partial \mathbf{v}} \mathbf{R} = \frac{\partial}{\partial \mathbf{v}} (\mathbf{x} - \frac{\hat{\mathbf{b}} \times \mathbf{v}}{\Omega}) \rightarrow -\frac{\partial}{\partial \mathbf{v}} (\frac{\hat{\mathbf{b}} \times \mathbf{v}}{\Omega}) = \frac{\mathbf{I} \times \hat{\mathbf{b}}}{\Omega}$$
$$\frac{\partial}{\partial \mathbf{v}} = \hat{\mathbf{b}} \frac{\partial}{\partial v_{\parallel}} + \frac{\mathbf{v}_{\perp}}{B} \frac{\partial}{\partial \mu} - \frac{\hat{\mathbf{b}} \times \hat{\mathbf{e}}_{\perp}}{v_{\perp}} \frac{\partial}{\partial \theta} + \frac{\mathbf{I} \times \hat{\mathbf{b}}}{\Omega} \frac{\partial}{\partial \mathbf{R}}$$
$$\frac{\partial}{\partial \mathbf{x}} = v_{\parallel} \hat{\mathbf{b}} \cdot \frac{\partial}{\partial \mathbf{R}} + \mathbf{v}_{\perp} \cdot \frac{\partial}{\partial \mathbf{R}}$$

$$\mathbf{v} \cdot \frac{\partial}{\partial \mathbf{x}} = v_{\parallel} \hat{b} \cdot \frac{\partial}{\partial \mathbf{R}} + \mathbf{v}_{\perp} \cdot \frac{\partial}{\partial \mathbf{R}}$$
(1)

$$\frac{q}{m} \mathbf{E} \cdot \frac{\partial}{\partial \mathbf{v}} = \frac{q}{m} \left(E_{\parallel} \cdot \frac{\partial}{\partial v_{\parallel}} + \frac{\mathbf{E} \cdot \mathbf{v}_{\perp}}{B} \frac{\partial}{\partial \mu} - \frac{\mathbf{E} \cdot \hat{\mathbf{b}} \times \mathbf{v}_{\perp}}{v_{\perp}^{2}} \frac{\partial}{\partial \theta} \right) + \frac{c \mathbf{E} \times \mathbf{B}}{B^{2}} \cdot \frac{\partial}{\partial \mathbf{R}}$$
(2)

$$\frac{q \mathbf{v} \times \mathbf{B}}{mc} \cdot \frac{\partial}{\partial \mathbf{v}} = 0 + 0 - \Omega \frac{\mathbf{v} \times \mathbf{B} \cdot \mathbf{B} \times \mathbf{v}_{\perp}}{B^{2} v_{\perp}^{2}} \frac{\partial}{\partial \theta} + \Omega \frac{(\mathbf{v} \times \hat{\mathbf{b}}) \times \hat{\mathbf{b}}}{\Omega} \cdot \frac{\partial}{\partial \mathbf{R}}$$
(3)

We also want to express $\phi(\mathbf{x})$ and $\mathbf{E}(\mathbf{x})$ in terms of $(\mathbf{R}, \mu, \mathbf{v}_{\parallel}, \theta)$

$$\phi(\mathbf{x}) = \phi(\mathbf{R} + \boldsymbol{\rho}(\theta)) \Rightarrow$$

$$\frac{\partial \phi}{\partial \theta} = \frac{\partial \mathbf{x}}{\partial \theta} \bigg|_{\mathbf{R}} \cdot \frac{\partial \phi}{\partial \mathbf{x}} = \frac{\partial \rho}{\partial \theta} \cdot \frac{\partial \phi}{\partial \mathbf{x}} = \frac{\mathbf{v}_{\perp}}{\Omega} \cdot \frac{\partial \phi}{\partial \mathbf{x}} = -\frac{\mathbf{E} \cdot \mathbf{v}_{\perp}}{\Omega}$$

 \therefore the 2nd term of RHS of Eq. (4.2)

$$\frac{q}{m} \frac{\mathbf{E} \cdot \mathbf{v}_{\perp}}{B} \frac{\partial}{\partial \mu} = -\frac{1}{c} (\frac{q}{m})^2 \frac{\partial \phi}{\partial \theta} \frac{\partial}{\partial \mu}$$

Collecting all terms in Eqs. (1)-(3),

$$\begin{bmatrix} \frac{\partial}{\partial t} + v_{\parallel} \hat{\mathbf{b}} \cdot \frac{\partial}{\partial \mathbf{R}} + c \frac{\mathbf{E} \times \mathbf{B}}{B^{2}} \cdot \frac{\partial}{\partial \mathbf{R}} - \frac{q}{m} \nabla_{\parallel} \phi \frac{\partial}{\partial v_{\parallel}} + \Omega \frac{\partial}{\partial \theta} - \frac{q\Omega}{mB} \frac{\partial \phi}{\partial \theta} \frac{\partial}{\partial \mu} - \Omega \frac{\mathbf{v}_{E} \cdot \mathbf{v}_{\perp}}{v_{\perp}^{2}} \frac{\partial}{\partial \theta} \end{bmatrix} f = 0$$

$$-i\omega \quad ik_{\parallel}v_{\parallel} \qquad \mathbf{k}_{\perp} \cdot \mathbf{v}_{E} \qquad k_{\parallel}v_{\parallel} \left(\frac{e\phi}{T_{e}}\right) \quad \Omega \qquad \underbrace{(i) \qquad (ii)}_{\mathbf{v}_{\perp}} = 0$$

ugly!

• Term (i) can be shown to be the 1st order correction to μ i.e.,

$$\frac{d\mu}{dt} = \frac{d\mu^{(0)}}{dt} + \frac{d\mu^{(1)}}{dt} \Rightarrow \frac{d}{dt} (\frac{v_{\perp}^2}{2B})^{(1)} = \frac{\mathbf{v}_{\perp}^{(0)}}{B} \cdot \frac{d}{dt} \mathbf{v}_{\perp}^{(1)}(\theta)$$

where

$$\frac{d}{dt}\mathbf{v}_{\perp}^{(1)} = \frac{q}{m}(\mathbf{v}_{\perp}^{(1)} \times \mathbf{B} + \mathbf{E}^{(1)}) \Rightarrow \mathbf{v}_{\perp}^{(0)} \cdot \frac{d}{dt}\mathbf{v}_{\perp}^{(1)} = \frac{q}{m}\mathbf{E}_{\perp}^{(1)} \cdot \mathbf{v}_{\perp}^{(0)}$$

- Term (ii) similarly, 1st order correction to the gyrophase θ , i.e., gyration speed is slightly nonuniform due to $\mathbf{E}_{\perp}^{(1)}$, \rightarrow Not of primary physical interest
- Now, we perform perturbation theory: with

$$\Omega \gg \omega \sim k_{\parallel} v_{\parallel}, \ \frac{\omega}{\Omega} \sim \frac{e\delta\phi}{T} \ll 1, \ k_{\parallel} \ll k_{\perp} \sim \rho_i^{-1}$$

• Eq. (4) \Rightarrow

$$\underbrace{\Omega \frac{\partial f}{\partial \theta}}_{\text{Largest term}} + \left(\frac{\partial}{\partial t} + v_{\parallel} \hat{\mathbf{b}} \cdot \frac{\partial}{\partial \mathbf{R}} + c \frac{\mathbf{E} \times \mathbf{B}}{B^2} \cdot \frac{\partial}{\partial \mathbf{R}} - \frac{q}{m} \nabla_{\parallel} \phi \frac{\partial}{\partial v_{\parallel}} - \frac{q\Omega}{mB} \frac{\partial \phi}{\partial \theta} \frac{\partial}{\partial \mu}\right) f = 0$$
(5)

Let $f = f^{(0)} + f^{(1)} + \cdots$, with expansion parameter $\delta \sim \frac{\omega}{\Omega} \sim \frac{k_{\parallel} v_{\parallel}}{\Omega} \sim \frac{|e|\phi}{T_e}$

• 0-th order
$$\Rightarrow \Omega \frac{\partial}{\partial \theta} f^{(0)} = 0 \Rightarrow f^{(0)}$$
 is independent of θ ,
 $\therefore f = \langle f \rangle + f_{AC}, \langle \cdots \rangle = \frac{1}{2\pi} \oint d\theta \{\cdots\}$ gyrophase average
with $f^{(0)} = \langle f \rangle, f^{(1)} = f_{AC} \ll f^{(0)} = \langle f \rangle$

• 1-st order
$$\Rightarrow$$

$$\underbrace{\Omega \frac{\partial}{\partial \theta} f^{(1)}}_{(\mathbf{a})} + \left(\frac{\partial}{\partial t} + v_{\parallel} \hat{\mathbf{b}} \cdot \frac{\partial}{\partial \mathbf{R}} + c \frac{\mathbf{E} \times \mathbf{B}}{B^2} \cdot \frac{\partial}{\partial \mathbf{R}} - \frac{q}{m} \nabla_{\parallel} \phi \frac{\partial}{\partial v_{\parallel}} - \underbrace{\frac{q\Omega}{mB} \frac{\partial \phi}{\partial \theta} \frac{\partial}{\partial \mu}}_{(\mathbf{b})} \right) f^{(0)} = 0$$
(6)

(a) and (b) can be combined into

$$\Omega \frac{\partial}{\partial \theta} \left[f_{AC} - \frac{q\phi}{mB} \frac{\partial \phi}{\partial \theta} \frac{\partial}{\partial \mu} \langle f \rangle \right]$$

• Taking gyro-phase average of Eq. (6): $\langle \cdots \rangle = \frac{1}{2\pi} \oint d\theta \cdots$

$$\left\langle \Omega \frac{\partial}{\partial \theta} \{ \cdots \} \right\rangle = 0 \Rightarrow$$

$$\left[\frac{\partial}{\partial t} + v_{\parallel} \hat{\mathbf{b}} \cdot \frac{\partial}{\partial \mathbf{R}} + \frac{c}{B} \hat{\mathbf{b}} \times \nabla \langle \phi \rangle - \frac{q}{m} \hat{\mathbf{b}} \cdot \frac{\partial}{\partial \mathbf{R}} \langle \phi \rangle \frac{\partial}{\partial v_{\parallel}} \right] \langle f \rangle = 0$$
(7)

Finally, the electrostatic NLGK vlasov equation in uniform B

• $\langle \phi \rangle$ contains the Finite Larmor Radius (FLR) effect! although it's gyrophase-averaged

$$\phi(\mathbf{x}) = \phi(\mathbf{R} + \boldsymbol{\rho}) = \sum_{\mathbf{k}} \phi_{\mathbf{k}} e^{i\mathbf{k}\cdot\mathbf{x}} = \sum_{\mathbf{k}} \phi_{\mathbf{k}} e^{i\mathbf{k}_{\perp}\cdot\mathbf{R}} e^{ik_{\perp}\rho\sin\theta}$$

Fourier-Bessel Expansion:

•

$$e^{ik_{\perp}\rho\sin\theta} = \sum_{n} J_{n}(k_{\perp}\rho)e^{in\theta}$$

$$\langle e^{ik_{\perp}\rho\sin\theta} \rangle = \frac{1}{2\pi} \oint d\theta \sum_{n}^{n} J_{n}(k_{\perp}\rho)e^{in\theta} = J_{0}(k_{\perp}\rho)e^{in\theta}$$

$$\langle \phi \rangle = \sum_{\mathbf{k}} J_0(k_\perp \rho) \phi_{\mathbf{k}} e^{i\mathbf{k} \cdot \mathbf{R}}$$

• <u>Widespread Misconception:</u> "Gyrokinetic Theory throws away the gyrophase-dependent information"

- Part of Reasons: Conventional (old-fashioned) derivation is rather opaque (much more complex in general geometry in nonuniform **B**)
 - Illustration in this note is a bit "modernized" version than the original papers up to mid 80's.
 - -Hard to identify the role or necessity of θ -dependent information
 - -Also, most attention was paid to the nonlinear GK-"Vlasov" Equations.

Gyrokinetic Poisson Equation

- Maxwell's Eqns are still fine! but was NOT written in g.c. coordinates (R)
- \bullet So we need to express $n_i({\bf x})$ in terms of $\langle f \rangle ({\bf R}, {\bf v}_{||}, \mu)$

$$(\mathbf{R}, \mathbf{v}_{\parallel}, \mu, \theta) \Rightarrow (\mathbf{x}, \mathbf{v})$$

"Pull-Back" Transformation for GK Maxwell's Eqn $(ES \Rightarrow Poisson)$

$$(\mathbf{x}, \mathbf{v}) \Rightarrow (\mathbf{R}, \mathbf{v}_{\parallel}, \mu, \theta)$$

"Push-Forward" Transformation for GK-Vlasov

$$\nabla^2 \phi = -4\pi e [n_i(\mathbf{x}) - n_e(\mathbf{x})]$$

- $n_i(\mathbf{x})$: typically obtained from GK Eqn
- n_e(x) : from adiabatic response for pure ITG or from drift-kinetic or bounce-kinetic or from some other fluid eqns for more realistic case "GK" required for ETG

$$n_{i}(\mathbf{x}) = \int d^{3}\mathbf{v} f_{i}(\mathbf{x}, \mathbf{v}, t)$$

$$= \int d^{3}\mathbf{x}' d^{3}\mathbf{v} f_{i}(\mathbf{x}', \mathbf{v}) \delta(\mathbf{x}' - \mathbf{x})$$

$$= \int d^{3}\mathbf{R} d\mu dv_{\parallel} d\theta B f_{i}(\mathbf{R}, \mu, v_{\parallel}, \theta) \delta(\mathbf{R} + \boldsymbol{\rho} - \mathbf{x})$$
(8)

not quite the same

$$\int d^{3}\mathbf{R}d\mu dv_{\parallel}B\langle f\rangle(\mathbf{R},\ \mu,\ v_{\parallel})$$

Since

$$f_i(\mathbf{R}, \ \mu, \ v_{\parallel}, \theta) = \langle f \rangle + f_{AC}(\mathbf{R}, \ \mu, \ v_{\parallel}, \theta),$$

we need to know " f_{AC} " as well. Back to Eq. (6):

$$\Omega \frac{\partial}{\partial \theta} \left[f_{AC} - \frac{q\phi}{mB} \frac{\partial \phi}{\partial \theta} \frac{\partial}{\partial \mu} \langle f \rangle \right] + \frac{d}{dt} \langle f \rangle = 0$$

and Eq. (**7**)

$$\left. \frac{d}{dt} \right|^{(0)} \left\langle f \right\rangle = 0$$

 \Rightarrow

$$\Omega \frac{\partial}{\partial \theta} \left[f_{AC} - \frac{q\phi}{mB} \frac{\partial \phi}{\partial \theta} \frac{\partial}{\partial \mu} \langle f \rangle \right] + \left(\frac{d}{dt} - \frac{d}{dt} \Big|^{(0)} \right) \langle f \rangle = 0$$

$$\frac{d}{dt} - \frac{d}{dt}^{(0)} \propto "\phi - \langle \phi \rangle"$$
(9)

integrating Eq. (9)

$$f_{AC}(\theta) \simeq \frac{q}{mB} (\phi - \langle \phi \rangle) \frac{\partial}{\partial \mu} \langle f \rangle$$
 (10)

Polarization Density

Eq. (8) \Rightarrow

$$\begin{split} n_{i}(\mathbf{x}) &= \underbrace{\int d^{3}\mathbf{R} d\mu dv_{\parallel} d\theta B \langle f \rangle \delta(\mathbf{R} + \boldsymbol{\rho} - \mathbf{x})}_{n_{i,gc}(\mathbf{x})} \\ &+ \underbrace{\int d^{3}\mathbf{R} d\mu dv_{\parallel} d\theta B \frac{q}{mB} \left(\boldsymbol{\phi} - \langle \boldsymbol{\phi} \rangle \right) \frac{\partial \langle f \rangle}{\partial \mu} \delta(\mathbf{R} + \boldsymbol{\rho} - \mathbf{x})}_{n_{pol}(\mathbf{x})} \end{split}$$

- $n_{i,gc}(\mathbf{x})$: G.C. density at particle position
- $n_{pol}(\mathbf{x})$: Polarization Density, one can evaluate exactly for $\langle f \rangle \propto e^{-\mu B/T}$, i.e., "Maxwellian in $\mu \propto v_{\perp}^2$ "

$$\rightarrow (1 - \Gamma_0) \delta \phi$$

$$\rightarrow \text{ For long wavelength }; \propto \vec{\nabla}_{\perp} \cdot \left(\frac{n}{B^2} \vec{\nabla}_{\perp} \delta \phi\right)$$
¹⁸

Nonlinear Gyrokinetics for Large Scale Computation

• Direct simulation of actual size fusion plasmas in realistic geometry using the primitive nonlinear plasma equations (Vlasov-Maxwell), is far beyond the computational capability of foreseeable future.

 For turbulence problems in fusion plasmas, the temporal scales fluctuations much longer than the period of a charged particle's cyclotron motion, while the spatial scales and gyro-orbits are much smaller than the macroscopic length scales: → details of the charged particle's gyration motion are not of physical interest → Develop reduced dynamical equations which capture the essential features

• After decoupling of gyro-motion, gyrokinetic equation describes evolution of gyrocenter distribution function, independent of the gyro-phase, θ , defined over a fivedimensional phase space (**R**, v_{\parallel} , μ). \rightarrow

save enormous amounts of computing time by having a time step greater than the gyro-period, and by reducing the number of dynamical variables.

• In gyrokinetic approach, gyro-phase is an ignorable coordinate, magnitude of the perpendicular velocity enters as a parameter in terms of an adiabatic invariant μ

• Nonlinear gyrokinetic equations are now widely used in turbulence simulations.6

• Starting from the original Vlasov-Maxwell system (6D), pursue **"Reduction of dimensionality"** for both computational and analytic feasibility.

• Keep intact the underlying symmetry/conservation of the original system.

• Perturbation analysis consists of near-identity coordinate transformation which "**decouples**" the gyration from the slower dynamics of interest in the single particle Lagrangian, rather than a direct "gyro-phase average" of Vlasov equation.

• This procedure is reversible:

The gyro-phase dependent information can be recovered when it is needed.

Phase Space Lagrangian Derivation of Nonlinear Gyrokinetics

[since Hahm, PF **31**, 2670 '88, followed by Brizard, Sugama,...]

- Conservations Laws are Satisfied.
- Various expansion parameters appear at different stages
 →Flexibility in variations of ordering for specific application
- Guiding center drift calculations in equilibrium field **B**: Expansion in $\delta_B = \rho_i / L_B \sim \rho_i / R$.

• Perturbative analysis consists of near-identity transformations to new variables which remove the gyrophase dependence in perturbed fields $\delta \mathbf{A}(\mathbf{x})$, $\delta \phi(\mathbf{x})$ where $\mathbf{x} = \mathbf{R} + \rho$: Expansion in $\varepsilon_{\phi} = e[\delta \phi - (v_{||}/c)\delta A_{||}]/T_{e} \sim \delta B_{||}/B_{0}$.

Derivation more transparent, less amount of algebra

8

Hierarchy of Nonlinear Governing Equations

Nonlinear equations:	Steps for	Physics lost due to reduction
From fundamental,	reduction	-
primitive to reduced,		
simplified		
Vlasov-Klimontovich		
equation [Klimontovich	Remove high	
67]	frequency terms	
	$(\geq \omega_{ci})$	
Gyrokinetic Equation:	2	High frequency phenomena
Conservative	Neglect velocity	
[Dubin 83, Hahm 88a,b, 🟳	space	
Brizard 89, 06]	nonlinearity	
Gyrokinetic Equation:	nonninearity	Conservation of energy between
Conventional [Frieman →		particles and fields, of phase-space
82]	Take moments in	volume, nonlinear trapping of
	velocity space	particles along B .
Gyrofluid Equation	X	Some nonlinear kinetic effects
[Beer 96, Dorland 93] 🛛 🧹		including inelastic Compton
		scattering [Mattor 92], accuracy in
	Expansion in	damping rates of zonal flow
	finite Larmor	[Rosenbluth 96] and damped mode
	radius terms;	[Sugama97]
Fluid Equations	Ordering for	Most kinetic effects associated
[Yagi 94, Scott 97, 🏻 🏹	/ collisional	with long mean free paths and
Zeiler 97, Xu 02,	plasmas	finite size orbits.
Simakov 05]		

from Diamond-Itoh-Itoh-Hahm : PPCF 47, R35, (2005)

Shear-Alfvén Continuum in Sheared Magnetic Field

• When driving is weak, shear-Alfvén wave DR. $\omega^2 = k_{\parallel}^2 v_{A}^2$

→ In sheared magnetic field, with $k_{\parallel} = \frac{nq(r) - m}{qR} \cong \frac{k_{\theta}}{L_{s}} (x - x_{m,n})$

• For given n, m, linear D.R. is satisfied at least one radial position for any reasonably small values in k_{\parallel}

→ as $k_{\parallel}(x)$ is varied as a function of x, ω assumes "continuum" of values, rather than an "eigenvalue" (discretized)

→ Alfvén continuum → initial wave packet will phase-mix and decay algebraically in time.

• Then what's the consequence of toroidal geometry?

i.e., coupling between neighboring poloidal harmonics

Linear Coupling of Poloidal Harmonics

Shear-Alfvén Continuum of each poloidal harmonics (in Slab) ۲

Toroidicity-Induced Alfvén GAP

Each harmonics considered in sheared slab

$$v_A^2 \propto B^2 = \text{const}$$

 $B = \frac{B_0}{1 + \frac{r}{R_0} \cos \theta}$ induces toroidal GAP

→ (involves solving Mathieu Equation) Continuum Dispersion Relation Not Satisfied for

$$\frac{\mathbf{v}_A}{2qR}(1-\varepsilon) < \omega < \frac{\mathbf{v}_A}{2qR}(1+\varepsilon)$$

Toroidal Alfvén Eigen modes

- At the midpoint between two adjacent rational surfaces $k_{\parallel} = \frac{1}{2qR} \sim \text{GAP occurs near} \quad \omega \simeq \frac{v_A}{2qR}$
- "Standing wave formation" from

superposition of

 $\partial B_{\perp}^{n,m} e^{;\mathrm{co-prop}} \text{ and } \partial B_{\perp}^{n,m+1} e^{;\mathrm{counter-prop}}$

• This "TAE" modes can be excited via resonance with energetic ions.

 … AE zoo accommodates TAE, BAE, GAE, CAE, HAE, EAE, LSAE, RSAE, …, and Nonconventional AE !

Translational Invariance

• If $\frac{\mathbf{v}_A}{qR_0}$ is uniform in r, $\sim N(q(a)-q(0))$ modes have the same eigenfrequency (degenerate).

For single-N,

Quasi-Translational Invariance

With equilibrium variation, degeneracy is broken.
 Each TAE's has slightly different eigenfrequency.
 "High-N TAE" still contains many poloidal harmonics.

Nonlinear Saturation Mechanism for High-N TAE

" Ion Compton Scattering "

• If $\frac{\omega''}{k_{\parallel}''} \sim v_{Ti} \ll v_A$, via Compton Scattering, fluctuation energy is transferred to lower frequency mode, eventually absorbed by linearly stable mode near lower continuum.

"Look for Nonlinear Coupling Channel " via beat wave with low phase velocity which gives $\frac{\omega''}{k''_{II}} \sim v_{Ti}$!

Generation of Low Phase Velocity Beat Wave

Nonlinear Interaction of TAE's \rightarrow Sound Wave-like Density Fluctuation

	Test mode (TAE)	Background mode (TAE)	Beat wave (Sound wave)
Wave Vector	\vec{k}	\vec{k}'	$\vec{k}'' = \vec{k} - \vec{k}'$
Frequency	ω	ω'	$\omega'' = \omega - \omega' \\ \lesssim \varepsilon \omega \text{small}$
k_{\parallel} @ gap	$\frac{1}{2qR}$	$-\frac{1}{2qR}$	" $\frac{1}{qR}$ " large
• Single – n :			
Toroidal Mode Number	п	n	0
Poloidal Mode Number	т	m+1	-1
• For multi – n :			
Toroidal Mode Number		<i>n</i> ′	n-n' << n
Poloidal Mode Number		<i>m</i> ′ +1	m - m' - 1 << m

* This talk : 10¹≤ N <<10²

Weak Turbulence Nonlinear Analysis [Hahm&Chen, PRL '95]

- 3rd Order Perturbation Theory : $\frac{\gamma_L}{\omega_A} \ll 1$
- 1st order : Test TAE (\vec{k}) ideal MHD $\frac{\partial}{\partial t} \psi_{\vec{k}}^{(1)} = -\hat{\mathbf{n}} \cdot \nabla \phi_{\vec{k}}^{(1)}$ $\frac{\partial}{\partial t} \nabla_{\perp}^{2} \phi_{\vec{k}}^{(1)} = -\mathbf{v}_{A}^{2} \hat{\mathbf{n}} \cdot \nabla \nabla_{\perp}^{2} \psi_{\vec{k}}^{(1)}$ (\vec{k})
- 2nd order : Nonlinear Interaction of two TAE's, $\begin{pmatrix} k \\ \vec{k'} \end{pmatrix}$. \rightarrow Sound-wave-like density fluctuation, $\vec{k''}$.

$$\left(\frac{\partial}{\partial t} + \mathbf{v}_{\parallel} \hat{\mathbf{n}} \cdot \nabla \right) \delta f_{\vec{k}''}^{(2)} = \left\{ \left(\frac{\delta \vec{B}}{B_0} \cdot \frac{\partial}{\partial t} \vec{\mathbf{v}}_E \right)_{\vec{k}''} + \frac{|e|}{M_i} \hat{\mathbf{n}} \cdot \nabla \phi_{\vec{k}''} \right\} \frac{\partial f_0}{\partial \mathbf{v}_{\parallel}} \\ \frac{\delta J_{\perp} \times \delta B_{\perp}}{\delta J_{\perp} \times \delta B_{\perp}} \quad \mathbf{NL}$$

" $\omega'' = k_{\parallel}'' v_{\parallel}$ Resonance important." 3rd order : Nonlinear Evolution of Test TAE (\vec{k}), in the presence of density fluctuation $\delta n_{\vec{k}''}^{(2)}$ and other TAE's $\phi_{\vec{k}'}^{(1)}$.

$$\mathbf{v}_{A}^{2}\hat{\mathbf{n}}\cdot\nabla\nabla_{\perp}^{2}\boldsymbol{\psi}_{\vec{k}}+\frac{\partial}{\partial t}\nabla_{\perp}^{2}\boldsymbol{\phi}_{\vec{k}}+\sum_{\vec{k}'}\nabla\cdot\left(\frac{\partial n_{\vec{k}''}^{(2)}}{n_{0}}\frac{\partial}{\partial t}\nabla_{\perp}\boldsymbol{\phi}_{\vec{k}'}^{(1)}\right)=0.$$

Nonlinear Evolution of TAE in the presence of density fluctuation

$$\mathbf{v}_{A0}^{2}\left(\hat{n}\cdot\nabla\nabla_{\perp}^{2}\boldsymbol{\psi}_{\vec{k}}+\sum_{\vec{k}'}\nabla\boldsymbol{\psi}_{\vec{k}'}\times\hat{n}\cdot\nabla\nabla_{\perp}^{2}\boldsymbol{\psi}_{\vec{k}''}\right)+\frac{\partial}{\partial t}\nabla_{\perp}^{2}\boldsymbol{\phi}_{\vec{k}}+\sum_{\vec{k}'}\nabla\boldsymbol{\phi}_{\vec{k}'}\times\hat{n}\cdot\nabla\nabla_{\perp}^{2}\boldsymbol{\phi}_{\vec{k}''}+\sum_{\vec{k}'}\nabla\cdot\left(\frac{\partial n_{\vec{k}''}^{(2)}}{n_{0}}\right)\frac{\partial}{\partial t}\nabla_{\perp}\boldsymbol{\phi}_{\vec{k}'}=0$$

• Recall; Vorticity Equation is $\vec{\nabla}_{\perp} \cdot \delta \vec{J}_{\perp}^{\text{pol}} + \nabla_{\parallel} \cdot \delta J_{\parallel} = 0$ where " $\delta \vec{J}_{\perp}^{\text{pol}} = \frac{1}{B_0} \hat{n} \times \rho \frac{d \vec{\nabla}_E}{dt}$ " depends on "number density."

• Other nonlinearities are subdominant for $k'_{\perp}k''_{\perp}\rho_s^2 \ll \frac{\omega'}{\Omega_{ci}}$

* Multiplying $\phi_{\vec{k}}^*$, take imaginary part of the radial average, we get

$$\frac{\partial}{\partial t}I_{\vec{k}} = \gamma_L(\vec{k})I_{\vec{k}} - \sum_{\vec{k}'}M_{\vec{k},\vec{k}'}I_{\vec{k}'}I_{\vec{k}}$$
$$I_{\vec{k}} \equiv \left\langle \left| \nabla_{\perp}\phi_{\vec{k}} \right|^2 \right\rangle, \quad M_{\vec{k},\vec{k}'} \equiv \frac{\omega'}{2}\frac{\chi_e^2 \operatorname{Im}\chi_i}{\left|\chi_e + \chi_i\right|^2}\frac{M_i}{B_0}$$

" Frequency Chirping from Ion Compton Scattering "

Fluctuation Energy is transferred to Lower Frequency due to Ion Compton Scattering.

At Nonlinear Saturation

$${}^{\text{\tiny ff}} \left(\frac{\delta B_r}{B_{\varphi}}\right)^2 \simeq \frac{1}{4\pi} \left(1 + \frac{T_e}{T_i}\right)^2 \left(\frac{\overline{\gamma}_L}{\omega_A}\right) \left(\frac{r}{R_0}\right)^{4}$$

• Magnitude :
$$\frac{\overline{\gamma}_L}{\omega_A} < \frac{\overline{\gamma}_A^{\text{Max}}}{\omega_A} \lesssim 10^{-2}$$

 $\frac{r}{R_0} \sim 10^{-1} \implies \frac{\delta B_r}{B_{\varphi}} \lesssim 10^{-3}$
• Scaling : $\frac{\delta B_r}{B_{\phi}} \propto \left(\frac{\overline{\gamma}_L}{\omega_A}\right)^{\frac{1}{2}}$: weak turbulence theory
 $(\iff \delta B_r \propto \gamma_L^2; \text{ à la single wave trapping}) \text{Berk, Breizman, Fu, W. Park(not H. Park), Wu, White, Rosenbluth ...}$

• More relevant for High-N Multi-mode Overlapping Case. Also for stronger drive.

Single Wave Trapping (Berk-Breizmann et al.)

- Resonant particles are trapped in the potential well produced by TAE.
- The potential well will last an auto-correlation time, ω_{ac}^{-1} .
- A trapped particle will transverse a closed orbit in, ω_b^{-1} , mixing hot-particle distribution function.

→ Require : $\underline{\omega_b} > \underline{\omega_{ac}}$ Nonlinear Saturation : $\omega_b \sim \gamma_{\text{Lin}}$

• It also requires a well-defined potential well in space,

$$\Delta X_{\text{particle, excursion}} < \Delta X_{\text{N,M}}$$

,where $\Delta X_{\text{N,M}}$: distance between neighboring rational surfaces.

Weak Turbulence Theory

Requires

 $\omega_b < \omega_{ac}$

and

 $\Delta X_{\text{ptl. exc.}} > \Delta X_{\text{N,M}}$

Chirikov Criterion

Validity Regimes

* For Quasi-Linear Theory (Weak Turbulence Expansion)

* For Single Wave Trapping

$$\Delta X_{\text{ptl. exc.}} < \Delta X_{\text{N,M}}, (^{\text{Then,}} \omega_b > \omega_{ac} \rightarrow 0)$$

PLOT : in $\left(\frac{\delta B_r}{B_{\phi}}, N\right)$ space Approximate equilibrium parameters for ITER PRETOR.

[Candy, Rosenbluth, NF '95]

38

Validity Regimes For ITER PRETOR Parameters

Incompressible MHD Turbulence

Tutorial at Theorié-Fest, Aix-en-Provence, 200? by P.H. Diamond connects :

- Weak Turbulence Kinetic Theory : Sagdeev & Galeev '67
- Scaling Derivation : PHD & Craddock: Comments in Plasma Phys '90 Lazarian & Vishniac: Ap. J. '99

and

• Lengthy Crank : Goldreich & Sridhar: Ap. J. '95

<u>Common Theme :</u>

Nonlinear Interaction of Low Frequency Beat Wave with Particles or Eddys

	Weak Turbulence Theory of Incompressible MHD Turb.	WTT of Toroidal Alfvén Eigenmodes in Tokamaks
High Freq. Shear-Alfvén Waves interact nonlinearly with	Eddys	Thermal lons
allowed by	Low Freq. Beat Wave produced by Counter-Prop ⁿ	Low Frequency Beat Wave produced by "standing" TAEs (formed linearly by Counter-Prop ^{<u>n</u>} of neighboring harmonics)
resulting in	Alfvén Effect (down by $\frac{\Delta \omega_k}{k_{\parallel} v_{\rm A}}$) and Scale-dependent Anisotropy (Intermediate Turbulence : G&S Ap. J. '97 \simeq Anisotropic I-K '65)	Down-shift of Frequency k_{\parallel} determined by equilibrium \vec{B} geometry k_{\perp} by linear drive (energetic particles)
Theory breaks down	when $k_{\parallel} \mathbf{v}_{\mathrm{A}} = \mathbf{v}_{\perp} / \ell_{\perp}$ for small scales first	with non-overlapping island (violation of Chirikov Criterion) in phase-space, for large scales first
turning into	Critically Balanced Cascade (G&S '95 '97)	Single-Wave Trapping → Hole-Clump Pair in phase-space. Berk-Breizmann Paradigm

Conclusions

Alfvén waves have been studied from different angles.

- MHD Turbulence Community : Fixation with k-spectra
- MFE Theory Community : Fixation with linear instability zoology

TAE, GAE, RSAE, LSAE, ...

Nonlinear Gyrokinetic Theory-based
 Extensions may bridge some gaps.

