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Basics of Shear- Alfvén Waves
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Gyrokinetics and Polarization Density

• Vorticity Equation can be derived from

• What is Physical Meaning of Polarization Density?

• What is Gyrokinetics? 4

Ref. Hahm-Lee-Brizard, Phys Fluids „88
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From moments of 

Gyrokinetic Equation



Conventional (old-fashioned) Derivation of
Non-linear Gyrokinetic Equation

∙ Closely follow Guiding Center transformation by
P.J. Catto, Plasma Phys. 20, 719 (1977)

∙ Resulting equation
Frieman and Chen, PF 25, 502 (1982)
Lee, PF 26 556 (1983)

∙ Purpose: illustrate basic physics and
mathematical complexity
involved in this conventional method.



Consider uniform B = 𝐵b̂ to emphasize nonlinear effects

∙ Goal: from[
∂

∂𝑡
+ v ⋅ ∂

∂x
+

𝑞

𝑚

(
E +

1

𝑐
v ×B

)
⋅ ∂

∂v

]
𝑓 (x,v, 𝑡) = 0 6D Vlasov Eqn

get (
∂

∂𝑡
+

𝑑R

𝑑𝑡
⋅ ∂

∂R
+

𝑑𝑣∥
𝑑𝑡

∂

∂𝑣∥

)
⟨𝑓⟩(R, 𝜇, 𝑣∥, 𝑡) = 0 5D GK Eqn

with
𝑑𝜇

𝑑𝑡
= 0 and

∂

∂𝜃
⟨𝑓⟩ = 0

𝜇 ≃ 𝑣2⊥/(2𝐵) : magnetic moment, an adiabatic invariant at lowest order

∙ Assumption:
– 𝜔 ≪ Ω𝑐𝑖

– 𝑘∥ ≪ 𝑘⊥ ∼ 𝜌−1
𝑖

– 𝛿𝑓/𝑓0 ∼ 𝛿𝑛/𝑛0 ∼ 𝑒𝛿𝜙/𝑇𝑒 ≪ 1



Guiding Center Transformation à la Catto

(x,v) → (R,v∥, 𝜇, 𝜃), 𝜃 : gyrophase-angle
R = x− 𝝆, 𝝆 = b̂×v

Ω , Ω = 𝑒𝐵
𝑚𝑐

𝑣∥ = b̂ ⋅ v , 𝜇 = 𝑣2⊥/(2𝐵)

𝜃 defined by ⎧⎨
⎩

v = 𝑣∥b̂ + 𝑣⊥ê⊥
𝑒⊥ = −ê2 cos 𝜃 − ê1 sin 𝜃

ê𝜌 = ê1 cos 𝜃 − ê2 sin 𝜃

Note that for uniform B,

𝑑3x𝑑3v = 𝐵︸︷︷︸ 𝑑𝜇𝑑𝜃𝑑𝑣∥𝑑3R
𝐵 : “phase-space volume”



Then, we would like to express ∂
∂x and ∂

∂v in G.C. space
i.e., in terms of 𝜇, 𝑣∥,R, and 𝜃;

∂

∂x
=

∂R

∂x
⋅ ∂

∂R
+

∂𝜇

∂x

∂

∂𝜇
+

∂𝑣∥
∂x

∂

∂𝑣∥
+

∂𝜃

∂x
⋅ ∂

∂𝜃

∂

∂v
=

∂R

∂v
⋅ ∂

∂R
+

∂𝜇

∂v

∂

∂𝜇
+

∂𝑣∥
∂v

∂

∂𝑣∥
+

∂𝜃

∂v
⋅ ∂

∂𝜃

→ important to check what quantities are held constant when taking partial derivatives

Since
∂

∂x
𝜇

∣∣∣∣
v=const

= 0,
∂

∂x
𝑣∥

∣∣∣∣
v=const

= 0,
∂

∂x

∣∣∣∣
v=const

𝜃 = 0, and R = x− b̂× v

Ω

∂
∂x → only the 1st term on the R.H.S. survives ⇒

∂

∂x
= I ⋅ ∂

∂R
=

∂

∂R



Also, noting that
∂

∂v

∣∣∣∣
x=const

𝑣∥ =
∂

∂v

∣∣∣∣
x=const

v⋅b̂ = b̂,
∂

∂v
𝜇 = v⊥/𝐵

∂

∂v
R =

∂

∂v
(x− b̂× v

Ω
) → − ∂

∂v
(
b̂× v

Ω
) =

I× b̂

Ω

∂

∂v
= b̂

∂

∂𝑣∥
+

v⊥
𝐵

∂

∂𝜇
− b̂× ê⊥

𝑣⊥

∂

∂𝜃
+

I× b̂

Ω

∂

∂R
⇒

v ⋅ ∂

∂x
= 𝑣∥�̂� ⋅ ∂

∂R
+ v⊥ ⋅ ∂

∂R
(1)

𝑞

𝑚
E ⋅ ∂

∂v
=

𝑞

𝑚

(
𝐸∥ ⋅ ∂

∂𝑣∥
+

E ⋅ v⊥
𝐵

∂

∂𝜇
− E ⋅ b̂× v⊥

𝑣2⊥

∂

∂𝜃

)
+

𝑐E×B

𝐵2
⋅ ∂

∂R
(2)

𝑞v ×B

𝑚𝑐
⋅ ∂

∂v
= 0 + 0− Ω

v ×B ⋅B× v⊥
𝐵2𝑣2⊥

∂

∂𝜃
+ Ω

(v × b̂)× b̂

Ω
⋅ ∂

∂R

= Ω
∂

∂𝜃
− v⊥ ⋅ ∂

∂R
(3)



We also want to express 𝜙(x) and E(x)
in terms of (R, 𝜇,v∥, 𝜃)

𝜙(x) = 𝜙(R + 𝝆(𝜃)) ⇒

∂𝜙

∂𝜃
=

∂x

∂𝜃

∣∣∣∣
R

⋅ ∂𝜙
∂x

=
∂𝝆

∂𝜃
⋅ ∂𝜙
∂x

=
v⊥
Ω

⋅ ∂𝜙
∂x

= −E ⋅ v⊥
Ω

∴ the 2nd term of RHS of Eq. (4.2)

𝑞

𝑚

E ⋅ v⊥
𝐵

∂

∂𝜇
= −1

𝑐
(
𝑞

𝑚
)2
∂𝜙

∂𝜃

∂

∂𝜇

Collecting all terms in Eqs. (1)-(3),

[
∂

∂𝑡
+ 𝑣∥b̂ ⋅ ∂

∂R
+ 𝑐

E×B

𝐵2
⋅ ∂

∂R
− 𝑞

𝑚
∇∥𝜙

∂

∂𝑣∥
+ Ω

∂

∂𝜃
− 𝑞Ω

𝑚𝐵

∂𝜙

∂𝜃

∂

∂𝜇
− Ω

v𝐸 ⋅ v⊥
𝑣2⊥

∂

∂𝜃

]
𝑓 = 0

(4)

−𝑖𝜔 𝑖𝑘∥𝑣∥ k⊥ ⋅ v𝐸 𝑘∥𝑣∥

(
𝑒𝜙

𝑇𝑒

)
Ω (𝑖) (𝑖𝑖)︸ ︷︷ ︸

ugly!



∙ Term (i) can be shown to be the 1st order correction to 𝜇
i.e.,

𝑑𝜇

𝑑𝑡
=

𝑑𝜇(0)

𝑑𝑡
+

𝑑𝜇(1)

𝑑𝑡
⇒ 𝑑

𝑑𝑡
(
𝑣2⊥
2𝐵

)(1) =
v
(0)
⊥
𝐵

⋅ 𝑑
𝑑𝑡
v
(1)
⊥ (𝜃)

where

𝑑

𝑑𝑡
v
(1)
⊥ =

𝑞

𝑚
(v

(1)
⊥ ×B + E(1)) ⇒ v

(0)
⊥ ⋅ 𝑑

𝑑𝑡
v
(1)
⊥ =

𝑞

𝑚
E

(1)
⊥ ⋅ v(0)

⊥

∙ Term (ii) similarly, 1st order correction to the gyrophase
𝜃, i.e., gyration speed is slightly nonuniform due to E

(1)
⊥ ,

→Not of primary physical interest

∙ Now, we perform perturbation theory:
with

Ω ≫ 𝜔 ∼ 𝑘∥𝑣∥,
𝜔

Ω
∼ 𝑒𝛿𝜙

𝑇
≪ 1, 𝑘∥ ≪ 𝑘⊥ ∼ 𝜌−1

𝑖



∙ Eq. (4)⇒

Ω
∂𝑓

∂𝜃︸︷︷︸
Largest term

+

(
∂

∂𝑡
+ 𝑣∥b̂ ⋅ ∂

∂R
+ 𝑐

E×B

𝐵2
⋅ ∂

∂R
− 𝑞

𝑚
∇∥𝜙

∂

∂𝑣∥
− 𝑞Ω

𝑚𝐵

∂𝜙

∂𝜃

∂

∂𝜇

)
𝑓 = 0

(5)

Let 𝑓 = 𝑓 (0) + 𝑓 (1) + ⋅ ⋅ ⋅ , with expansion parameter 𝛿 ∼ 𝜔
Ω ∼ 𝑘∥𝑣∥

Ω ∼ ∣𝑒∣𝜙
𝑇𝑒

∙ 0-th order ⇒ Ω ∂
∂𝜃𝑓

(0) = 0 ⇒ 𝑓 (0) is independent of𝜃,
∴ 𝑓 = ⟨𝑓⟩+ 𝑓𝐴𝐶 , ⟨⋅ ⋅ ⋅ ⟩ = 1

2𝜋

∮
𝑑𝜃{⋅ ⋅ ⋅ }gyrophase average

with 𝑓 (0) = ⟨𝑓⟩, 𝑓 (1) = 𝑓𝐴𝐶 ≪ 𝑓 (0) = ⟨𝑓⟩
∙ 1-st order ⇒

Ω
∂

∂𝜃
𝑓 (1)︸ ︷︷ ︸

(a)

+

⎛
⎜⎜⎜⎝ ∂

∂𝑡
+ 𝑣∥b̂ ⋅ ∂

∂R
+ 𝑐

E×B

𝐵2
⋅ ∂

∂R
− 𝑞

𝑚
∇∥𝜙

∂

∂𝑣∥
− 𝑞Ω

𝑚𝐵

∂𝜙

∂𝜃

∂

∂𝜇︸ ︷︷ ︸
(b)

⎞
⎟⎟⎟⎠ 𝑓 (0) = 0

(6)
(a) and (b) can be combined into

Ω
∂

∂𝜃

[
𝑓𝐴𝐶 − 𝑞𝜙

𝑚𝐵

∂𝜙

∂𝜃

∂

∂𝜇
⟨𝑓⟩
]



∙ Taking gyro-phase average of Eq. (6): ⟨⋅ ⋅ ⋅ ⟩ = 1
2𝜋

∮
𝑑𝜃 ⋅ ⋅ ⋅

⟨Ω ∂

∂𝜃
{⋅ ⋅ ⋅ }⟩ = 0 ⇒[

∂

∂𝑡
+ 𝑣∥b̂ ⋅ ∂

∂R
+

𝑐

𝐵
b̂×∇⟨𝜙⟩ − 𝑞

𝑚
b̂ ⋅ ∂

∂R
⟨𝜙⟩ ∂

∂𝑣∥

]
⟨𝑓⟩ = 0 (7)

Finally, the electrostatic NLGK vlasov equation in uniform B

∙ ⟨𝜙⟩ contains the Finite Larmor Radius (FLR) effect!
although it’s gyrophase-averaged

𝜙(x) = 𝜙(R + 𝝆) =
∑
k

𝜙k𝑒
𝑖k⋅x =

∑
k

𝜙k𝑒
𝑖k⊥⋅R𝑒𝑖𝑘⊥𝜌 sin 𝜃

Fourier-Bessel Expansion:
𝑒𝑖𝑘⊥𝜌 sin 𝜃 =

∑
𝑛

𝐽𝑛(𝑘⊥𝜌)𝑒𝑖𝑛𝜃

∴
⟨𝑒𝑖𝑘⊥𝜌 sin 𝜃⟩ = 1

2𝜋

∮
𝑑𝜃
∑
𝑛

𝐽𝑛(𝑘⊥𝜌)𝑒𝑖𝑛𝜃 = 𝐽0(𝑘⊥𝜌)

⟨𝜙⟩ =
∑
k

𝐽0(𝑘⊥𝜌)𝜙k𝑒
𝑖k⋅R



∙ Widespread Misconception: “Gyrokinetic Theory throws
away the gyrophase-dependent information”

∙ Part of Reasons: Conventional (old-fashioned) derivation
is rather opaque (much more complex in general geometry
in nonuniform B)
Illustration in this note is a bit “modernized” version than
the original papers up to mid 80’s.

– Hard to identify the role or necessity of 𝜃−dependent
information

– Also, most attention was paid to the nonlinear GK-
“Vlasov” Equations.



Gyrokinetic Poisson Equation
∙ Maxwell’s Eqns are still fine!

but was NOT written in g.c. coordinates (R)

∙ So we need to express 𝑛𝑖(x) in terms of ⟨𝑓⟩(R,v∥, 𝜇)

(R, v∥, 𝜇, 𝜃) ⇒ (x, v)

“Pull-Back” Transformation for GK Maxwell’s Eqn
(ES ⇒ Poisson)

(x, v) ⇒ (R, v∥, 𝜇, 𝜃)
“Push-Forward” Transformation for GK-Vlasov



∇2𝜙 = −4𝜋𝑒[𝑛𝑖(x)− 𝑛𝑒(x)]

∙ 𝑛𝑖(x) : typically obtained from GK Eqn

∙ 𝑛𝑒(x) : from adiabatic response for pure - ITG
or from drift-kinetic or bounce-kinetic
or from some other fluid eqns for more realistic case
“GK” required for ETG

𝑛𝑖(x) =

∫
𝑑3v𝑓𝑖(x, v, 𝑡)

=

∫
𝑑3x′𝑑3v𝑓𝑖(x′, v)𝛿(x′ − x)

=

∫
𝑑3R𝑑𝜇𝑑𝑣∥𝑑𝜃𝐵𝑓𝑖(R, 𝜇, 𝑣∥, 𝜃)𝛿(R + 𝝆− x) (8)

not quite the same ∫
𝑑3R𝑑𝜇𝑑𝑣∥𝐵⟨𝑓⟩(R, 𝜇, 𝑣∥)



Since
𝑓𝑖(R, 𝜇, 𝑣∥, 𝜃) = ⟨𝑓⟩+ 𝑓𝐴𝐶(R, 𝜇, 𝑣∥, 𝜃),

we need to know “𝑓𝐴𝐶” as well.
Back to Eq. (6):

Ω
∂

∂𝜃

[
𝑓𝐴𝐶 − 𝑞𝜙

𝑚𝐵

∂𝜙

∂𝜃

∂

∂𝜇
⟨𝑓⟩
]
+ “

𝑑

𝑑𝑡
⟨𝑓⟩ ” = 0

and Eq. (7)
𝑑

𝑑𝑡

∣∣∣∣(0) ⟨𝑓⟩ = 0

⇒
Ω

∂

∂𝜃

[
𝑓𝐴𝐶 − 𝑞𝜙

𝑚𝐵

∂𝜙

∂𝜃

∂

∂𝜇
⟨𝑓⟩
]
+

(
𝑑

𝑑𝑡
− 𝑑

𝑑𝑡

∣∣∣∣(0)
)
⟨𝑓⟩ = 0 (9)

𝑑

𝑑𝑡
− 𝑑

𝑑𝑡

(0)

∝ “𝜙− ⟨𝜙⟩”
integrating Eq. (9)

𝑓𝐴𝐶(𝜃) ≃ 𝑞

𝑚𝐵
(𝜙− ⟨𝜙⟩) ∂

∂𝜇
⟨𝑓⟩ (10)
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6

�Nonlinear Gyrokinetics for Large Scale Computation

• �Direct simulation of actual size fusion plasmas in realistic geometry

using the primitive nonlinear plasma equations (Vlasov-Maxwell), is far beyond the 

computational capability of foreseeable future.

• For turbulence problems in fusion plasmas, the temporal scales fluctuations much 
longer than the period of a charged particle's cyclotron motion, while the spatial 

scales and gyro-orbits are much smaller than the macroscopic length scales: �

details of the charged particle's gyration motion are not of physical interest �
Develop reduced dynamical equations which capture the essential features 

• After decoupling of gyro-motion, gyrokinetic equation describes evolution of gyro-

center distribution function, independent of the gyro-phase, �, defined over a five-

dimensional phase space (R, v||, μ). �
save enormous amounts of computing time by having a time step greater than the 

gyro-period, and by reducing the number of dynamical variables.

• In gyrokinetic approach, gyro-phase is an ignorable coordinate, magnitude of the 

perpendicular velocity enters as a parameter in terms of an adiabatic invariant μ�

• Nonlinear gyrokinetic equations are now widely used in turbulence simulations. 



7

�Modern Nonlinear Gyrokinetics

• �Starting from the original Vlasov-Maxwell system (6D), pursue 

“Reduction of dimensionality” for both computational and analytic 

feasibility. 

• Keep intact the underlying symmetry/conservation of the original 

system.

• Perturbation analysis consists of near-identity coordinate 

transformation which “decouples” the gyration from the slower 

dynamics of interest in the single particle Lagrangian, rather than a direct 

“gyro-phase average” of Vlasov equation. 

• This procedure is reversible:

The gyro-phase dependent information can be recovered when it is 

needed.



8

Phase Space Lagrangian Derivation of Nonlinear Gyrokinetics

�[since Hahm, PF 31, 2670 '88, followed by Brizard, Sugama,…]

• �Conservations Laws are Satisfied.

• Various expansion parameters appear at different stages

��Flexibility in variations of ordering for specific application 

• Guiding center drift calculations in equilibrium field B:

Expansion in �B = �i / LB ~ �i / R. 

• Perturbative analysis consists of near-identity 
transformations to new variables which remove the gyro-

phase dependence in perturbed fields �A(x), ��(x) where x

= R +�:

Expansion in �� = e[�� - (v||/c)�A||]/Te ~ �B||/B0.

• Derivation more transparent, less amount of algebra



Hierarchy of Nonlinear Governing Equations

22

from Diamond-Itoh-Itoh-Hahm : PPCF 47, R35, (2005)



Shear-Alfvén Continuum in Sheared Magnetic Field

• When driving is weak, shear-Alfvén wave DR.

In sheared magnetic field, with

• For given ,    , linear D.R. is satisfied at least one radial position for 

any reasonably small values in

 as    is varied as a function of , assumes “continuum” of 

values , rather than an “eigenvalue” (discretized)

 Alfvén continuum  initial wave packet will phase-mix and decay 

algebraically in time.

• Then what‟s the consequence of toroidal geometry?

i.e., coupling between neighboring poloidal harmonics  

)(
)(

,|| nm

s

xx
L

k

qR

mrnq
k 


 

2

A

2

||

2 vk

||k

)(|| xk x 

n m

23



• of each harmonics

• Shear-Alfvén Continuum of each poloidal harmonics (in Slab)

For            , dispersion relation satisfied at one x.

Linear Coupling of Poloidal Harmonics



k



q(r1) 
m0 1

n

r-1
r0 r1



k (x)



q(r1) 
m0 1

n



q(r0) 
m0

n



r







x  r  r0



)(v 2

||

2

A

2 xk
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Toroidicity-Induced Alfvén GAP

Each harmonics considered in sheared slab

constv 22
 BA

r-2 r-1 r0 r1 r2

)(
22 rA 

cos1
0

0

R

r

B
B





→ (involves solving Mathieu Equation)

Continuum Dispersion Relation Not Satisfied for

)1(
2

v
)1(

2

v
 

qRqR

AA

r-2 r-1 r0 r1 r2

)(|| m

s

rr
L

k
k  2

A

2

||

2 vk , with

induces toroidal GAP

25



Toroidal Alfvén Eigen modes

• At the midpoint between two adjacent rational surfaces

~ GAP occurs near

• “Standing wave formation” from 

superposition of

• This “TAE” modes can be excited via 

resonance with energetic ions.

• … AE zoo accommodates TAE, BAE, GAE, CAE, HAE, EAE, 

LSAE, RSAE, …, and

Nonconventional AE !

qR
k

2

1
|| 

qR

A

2

v
    

mnB ,

 1, 



mnB

propco;, 

 eB
mn

 propcounter;1, 

 eB
mn

and
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Translational Invariance

)(rq



• If           is uniform in   ,  modes have the 

same eigenfrequency (degenerate).
0

v

qR

A

))0()((~ qaqN r

For single-N,
27



• With equilibrium variation, degeneracy is broken. 

Each TAE‟s has slightly different eigenfrequency. 

“High-N TAE” still contains many poloidal harmonics.

Quasi-Translational Invariance

)(rq
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Nonlinear Saturation Mechanism for High-N TAE

• If , via Compton Scattering, fluctuation energy is 

transferred to lower frequency mode, eventually absorbed by linearly 

stable mode near lower continuum. 

“ Ion Compton Scattering ”

TAE 

TAE 

  BJ  Nonlinearity
“ BEAT WAVE ”

 

|||||| kkk 

“ Look for Nonlinear Coupling Channel ” via beat wave with 

low phase velocity which gives                  !

Bulk

Ti
k

v~
||
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Generation of Low Phase Velocity Beat Wave
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1/qR : large
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1m 
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“          ”

Nonlinear Interaction of TAE’s

→ Sound Wave-like Density Fluctuation

Test mode

(TAE)

Background mode 

(TAE)

Beat wave

(Sound wave)

Wave Vector

Frequency

@ gap

• Single – n :

Toroidal

Mode Number

Poloidal

Mode Number

• For multi – n : 

Toroidal

Mode Number

Poloidal

Mode Number

k


k 


kkk 


   
small

||k
qR2

1

qR2

1


qR

1“       ”
large

n n 0

m 1m 1

n n n n 

1m  1m m m  

* This talk : 101≤ N <<102
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“ Resonance important.”

Weak Turbulence Nonlinear Analysis [Hahm&Chen, PRL ’95]

- 3rd Order Perturbation Theory : 

• 1st order : Test TAE (    ) ideal MHD

• 2nd order : Nonlinear Interaction of two TAE‟s,         .

→ Sound-wave-like density fluctuation,      .

• 3rd order : Nonlinear Evolution of Test TAE (    ),

in the presence of density fluctuation

and other TAE‟s        .
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Nonlinear Evolution of TAE

in the presence of density fluctuation
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• Recall; Vorticity Equation is 0||||

pol   JJ 


where   “ ” depends on “number density.”
dt

d
n

B
J Ev

ˆ
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0

pol


 

• Other nonlinearities are subdominant for 
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* Multiplying , take imaginary part of the radial average, we get
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“ Frequency Chirping from Ion Compton Scattering ”

Fluctuation Energy is transferred to

Lower Frequency due to Ion Compton Scattering.





Frequency chirps 

towards 

lower continuum

from

the linearly most

unstable mode.



r

)(I

Lin
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At Nonlinear Saturation

2 2 4

0

1
   1

4

er L

i A

TB r

B T R

 

 

      
       

     

“                                ”

• Magnitude :

• Scaling :

Max
2    10L A

A A
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10~ 
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B

 

2

1











A
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: weak turbulence theory

( ;  à la single wave trapping)
2

LrB  

Our Mechanism :

• More relevant for High-N Multi-mode Overlapping Case.

Also for stronger drive.

Berk, Breizman, Fu, 

W. Park(not H. Park),

Wu, White,

Rosenbluth …

35



Single Wave Trapping (Berk-Breizmann et al.)

• Resonant particles are trapped in the potential well produced by 

TAE.

• The potential well will last an auto-correlation time, .

• A trapped particle will transverse a closed orbit in,       , 

mixing hot-particle distribution function.

→ Require : 

Nonlinear Saturation :

• It also requires a well-defined potential well in space,

ΔXparticle, excursion < ΔXN,M

1

ac
1

b

acb  

Lin~ b

,where ΔXN,M : distance between neighboring rational surfaces.
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Weak Turbulence Theory

Requires

acb  
and

ΔXptl. exc. > ΔXN,M

Chirikov Criterion
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Validity Regimes

٭ For Quasi-Linear Theory (Weak Turbulence Expansion)

٭ For Single Wave Trapping

• ΔXptl. exc. > ΔXN,M

4

0

2

0

4

1

ˆ8

1

NR

r

sqB
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• acb  

2

22

0
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ˆ4

ˆ8

1
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R
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sqB
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ΔXptl. exc. < ΔXN,M, (Then, → 0 )acb  

[Candy, Rosenbluth, NF ’95]

PLOT : in space

Approximate equilibrium parameters for ITER PRETOR.
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Validity Regimes For ITER PRETOR Parameters

/     0.8r a     2q, dense mode packing

N 210 10 1

610

510

410

310

210

 0/ BBr
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Incompressible MHD Turbulence

Tutorial at Theorié-Fest, Aix-en-Provence, 200?  by P.H. Diamond

connects :

• Weak Turbulence Kinetic Theory : Sagdeev & Galeev ‟67

• Scaling Derivation : PHD & Craddock: Comments in Plasma Phys ‟90

Lazarian & Vishniac: Ap. J. ‟99

and

• Lengthy Crank    : Goldreich & Sridhar: Ap. J. „95
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Common Theme :

Nonlinear Interaction of Low Frequency Beat Wave

with

Particles or  Eddys



Weak Turbulence Theory of 

Incompressible MHD Turb.

WTT of Toroidal Alfvén

Eigenmodes in Tokamaks

High Freq. Shear-Alfvén Waves 

interact nonlinearly with
Eddys Thermal Ions

allowed by
Low Freq. Beat Wave 

produced by Counter-Propn

Low Frequency Beat Wave 

produced by “standing” TAEs

(formed linearly by Counter-Propn

of neighboring harmonics)

resulting in

Alfvén Effect (down by            )
and

Scale-dependent Anisotropy
(Intermediate Turbulence : G&S Ap. J. „97

Anisotropic I-K  „65   )

Down-shift of Frequency

determined by

equilibrium       geometry

by linear drive (energetic particles)

Theory breaks down
when 

for small scales first

with non-overlapping island 

(violation of Chirikov Criterion)

in phase-space,

for large scales first

turning into
Critically Balanced Cascade

(G&S ‟95 ‟97)

Single-Wave Trapping

→ Hole-Clump Pair 

in phase-space.

Berk-Breizmann Paradigm
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Conclusions

Alfvén waves have been studied from different angles.

− MHD Turbulence Community : Fixation with k-spectra

…

− MFE      Theory    Community : Fixation with linear instability 

zoology

TAE, GAE, RSAE, LSAE, …

− Nonlinear Gyrokinetic Theory-based

Extensions may bridge some gaps.
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