Shocks, instabilities & particle acceleration

Tony Bell

University of Oxford

SN1006: A supernova remnant 7,000 light years from Earth X-ray (blue): NASA/CXC/Rutgers/G.Cassam-Chenai, J.Hughes et al; Radio (red): NRAO/AUI/GBT/VLA/Dyer, Maddalena & Cornwell; Optical (yellow/orange): Middlebury College/F.Winkler. NOAO/AURA/NSF/CTIO Schmidt & DSS

DIFFUSIVE SHOCK ACCELERATION

Due to scattering, CR recrosses shock many times Gains energy on each crossing

Typical interstellar magnetic field (3-5µG)

Optimistically: CR mean free path = Larmor radius

$$\implies E_{\text{max}} < 8 \times 10^{13} \text{ eV}$$
 Too small!, need 10¹⁵ eV

Streaming instability driven by cosmic rays Lucek & Bell 2000

B field lines, t = 0

 $\delta B/B >> 1$ scatters energetic particles

Linear instability

Model

Thermal plasma as MHD fluid CR as fixed uniform current \mathbf{j}_{CR}

Purely growing, circularly polarised transverse mode:

$$\gamma = \left(\frac{kB_0 j_{CR}}{\rho}\right)^{1/2}$$

Essence of instability: expanding loops of B

jxB expands loops

- \rightarrow decreases mass attached to field line element
 - \rightarrow increases *j*x*B*/ ρ acceleration
 - → Loops expand more rapidly

Non-linear growth – expanding loops

Slices through |B| - time sequence (fixed CR current)

Cavities and walls in |B| & ρ

Field lines: wandering spirals

Non-linear growth – expanding loops

jxB force must exceed magnetic tension: $curl(B) < \mu_0 j_{CR} \rightarrow L > B/\mu_0 j_{CR}$

L < p/eB

Scalelength must be less than CR Larmor radius

If saturation reached

$$B_{downstream} \approx 400 \left(\frac{u}{10^4 \,\mathrm{kms}^{-1}}\right)^{3/2} \left(\frac{n_e}{\mathrm{cm}^{-3}}\right)^{1/2} \left(\frac{\eta}{0.1}\right)^{1/2} \mu\mathrm{G}$$

Observations

Shock thickness & synchrotron losses

Good evidence for field amplification (Vink & Laming, Völk et al) Evidence for magnetic field amplification at shock (Vink & Laming, 2003; Völk, Berezhko, Ksenofontov, 2005)

Chandra observations

NASA/CXC/Rutgers/ J.Hughes et al. NASA/CXC/Rutgers/ J.Warren & J.Hughes et al. NASA/CXC/NCSU/ S.Reynolds et al. NASA/CXC/MIT/UMass Amherst/ M.D.Stage et al.

Inferred downstream magnetic field (Vink 2008)

Shocks in radio jets Centaurus A (Croston et al 2008)

Values taken by Croston et al: $n_e = 10^{-3} \text{ cm}^{-3}$ $u = 2600 \text{ kms}^{-1}$

Shell thickness $\Delta R = 300$ pc Shell radius R = 2000 pc

Estimates of B: Equipartition: 8 μG Shock thickness: ~ 1 μG

$$B \approx 400 \left(\frac{u}{10^4 \,\mathrm{kms}^{-1}} \right) \left(\frac{n_e}{\mathrm{cm}^{-3}} \right) \left(\frac{\eta}{0.1} \right) \ \mu\mathrm{G} \implies B \sim 1.7 \ \mu\mathrm{G}$$

Observations

Can we observe structure of magnetic field?

$$\delta L \approx \frac{1}{2} \frac{j_{CR}B}{\rho} t^2$$

Using scaling arguments for $j_{\rm CR}$, B, ρ & t

$$\frac{\delta L}{R} \approx \frac{\eta}{2} \frac{D}{D_{Bohm}} \quad \frac{h}{R} \approx 0.01$$

$$\sim 0.01 \quad 1 \quad 1$$

Observations

Spectral Index

Cosmic Ray spectrum arriving at earth Nagano & Watson 2000

Leakage from galaxy accounts for some of difference (Hillas 2005)

Historical SNR (Glushak 1985)

Cas A, Kepler, Tycho, SN1006, RCW86, RCW103, G319.7, 3C391, 0519-69.0

- SN1993J: α = 0.81 (Weiler et al 2007)
- **X** SN1987A: $\alpha = 0.9$, flattening to 0.8 (Manchester et al 2005)
- + G1.9+0.3: α = 0.62 (Green et al 2008)

CR-dominated shocks

Non-linear effects: curved spectrum steepen at low energy, flatten at high energy

Evidence for CR-dominated shocks

Low post-shock temperature RCW86 (CHANDRA/VLT Helder et al 2009)

Strong compression at shock SN1006 (CHANDRA, Warren et al 2005)

Contact discontinuity

Reverse shock

Varieties of non-diffusive behaviour

Super-diffusion & sub-diffusion due to wandering field lines (Duffy, Kirk, Gallant, Dendy 1995)

Postulate 'sweep-out' events (mirrors, perpendicular field)

Mirrors/barriers steepen spectrum

Synchroton spectrum $S(\nu)$ f $\nu^{-\alpha}$ $\alpha=0.5+(\gamma-2)/2$

Young SNR: spectral index vs magnetic field

Connected phenomena: CR dominated shocks Steepened spectrum non-diffusive transport magnetic field amplification

Cosmic Ray spectrum arriving at earth Nagano & Watson 2000

Why spectrum so straight 10¹¹-10¹⁵eV? Universal self-similarity?

CR origin above 10¹⁵eV?

Expansion into stellar wind

Parameters, based on SN1993J (Fransson & Bjornsson, 1998)

Mass loss rate (\dot{M}): 5x10⁻⁵ M_oyr⁻¹ Wind velocity (v_w): 10⁴ ms⁻¹ SN shock velocity (v_s): 2x10⁷ ms⁻¹ Shock radius (R): 10¹³ m Total CR efficiency (η): 0.3

Amplified magnetic field

 $\frac{B_{sat}^2}{\mu_0} \sim \eta \frac{v_s}{c} \rho v_s^2 \implies B_{sat} \sim 50G$ F&B deduce 64G from SN1993J observations

Maximum CR energy

Bohm diffusion \Box $E_{\text{max}} \approx 3 \times 10^{17} \text{ eV}$

SN interaction with dense circumstellar plasma

Supernova 2006 jc Pastorello et al 2007, Immler et al 2008

Shells $>1M_{o}$

Extreme luminosity requires large dense photosphere SN2005ap (Quimby et al 2007) SN2006gy (Smith & McCray 2007) Theory, eg pulsational instability (Woosley et al 2007)

Connection with gamma-ray bursts (GRB/XRF) eg GRB060218/SN2006aj

Continuum from XRF to GRB?

Summary

Magnetic field amplification an important part of shock acceleration

Potential diagnostics of physical environment & CR origin

- Magnetic field from shock thickness
- Spectral index/shape, CR dominated shocks, field amplification
- Time-dependent shock structure maps out ambient medium

Shocks in: very young SNR, GRB, galaxy clusters, early universe...

