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SYROVATSKY (1959) SOLUTION OF DIFFUSION EQUATION

Equation for a single source:

O gL, 1) — div [D(E,7,1)Vn,] — = [W(E, 7. 1)n,) = Q(E, 7. 1)5°(F — 7).

solution was obtained by exclusive method introducing the Syrovatsky variables

E

)\(E,Eg):/E gdel;((;), T(E,Eg):/E g%.

Thismethod isvalidwhen D(FE), b(E), Q(E) do not depend on time.
The Syrovatsky solution:

np(B,r) = o | dE,Q(E,)

1 /OO exp [—r2/4)\(E, Eg)}
b(E) Jg 4nN(E, E))*?



SYROVATSKY SOLUTION AND PROPAGATION THEOREM

The Syrovatsky solution obeysthe propagation theorem (Aloisio and VB 2004).

FOR UNIFORM DISTRIBUTION OF SOURCES WITH SEPARATION d
MUCH LESS THAN CHARACTERISTIC LENGTHS OF PROPAGATION,
SUCH AS I,..(E) andlyg(E), THE DIFFUSE SPECTRUM OF UHECR
HAS AN UNIVERSAL (STANDARD) FORM INDEPENDENT OF MODE
OF PROPAGATION .

when d — 0 solution for any mode of propagation tends to universal spectrum,
which for homogeneous distribution of sources can be calculated from conservation of
number of particles in the comoving volume np(E)dE = [ dtq[E,(t),t|dE,, where
g 1S the production rate per unit comoving volume.

C ,Co(’}/ — 2) Fmax
Juniv(E> — A Eg /O dz

min

dt

dz

(E, E z)\ " dE,
(1+Z> < Emin ) d—E,

where L Isemissivity and m describes evolution.




CALCULATION OF THE DIFFUSE FLUX

We calculate diffuse spectrum for sources located in vertices of cubic lattice

maz exp [—7“22/4)\(E, Eg)}
To(E) 47rb Z/ 6@ ) (ATA(E, Ey))*?

The diffusion coefficient D(E) is needed for calculation of A\(E, E,).

We assume magnetic turbulent plasma described as ensemble of MHD waves. Diffu-
sion occurs due to resonant scattering on MHD waves. Magnetic turbulence has the
basic (largest) scale [. with magnetic field B...

It determines the critical energy E. by relation rp (E.) = ..

AtE > E. D(E) ~ cr%/l. ~ E? for any spectrum of turbulence.
At E < E. D(F)isdetermined by spectrum of turbulence,

e.g. D(E) ~ E'/3 for the Kolmogorov spectrum.

Another option isthe Bohm diffusion D(E) = crp(E) ~ E.



CONVERSION OF DIFFUSIVE SPECTRUM TO UNIVERSAL SPECTRUM
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DIFFUSION at LOW-ENERGY END of UHECR
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diffusive propagation

The low-energy ’diffusive cutoff” at E, = 1 x 10'® eV is universal and valid for all
propagation modes. It is determined by fundamental energy E., = 2 x 10'® eV,
where pair-production and adiabatic energy losses become equal. The spectrum
at &/ < Ey depends on mode of propagation, e.g. rectilinear, Bohm or Kolmogorov
diffusion. The low-energy ’cutoff’ provides transition from extragalactic to galac-

tic CR.



SECOND-KNEE and ANKLE TRANSITIONS

Transition occurs at F,, < Ep = 1 x 10'® eV, i.e. at second knee. This tran-
sition agrees well with rigidity-dependent position of iron knee Ep. = ZE, =~
6.5 x 10'° eV, where E, ~ 2.5 x 10 eV if proton knee. The galactic accelera-
tion maximum E2a* < 10'® eV is satisfied. The predicted feature of extragalactic

proton interaction with CMB at £ > 1 x 10'® eV (dip) iswell confirmed.

Traditional (from 70s) model of ankle transition, E, ~ 1 x 10° eV, contradicts to
rigidity confinement and acceleration.
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modification factor

DIP IN COMPARISON WITH AKENO-AGASA DATA
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DIP IN COMPARISON WITH HIRES DATA

10° E
10" k- .
HiRes | - HIRes Il
07 o7
Yg— -
T N TOT s



modification factor

DIP IN COMPARISON WITH YAKUTSK DATA

T T il

10° =
MNee
10_1 3 * -

Yakutsk
0°F 27
’Yg— -
T TS




DIFFUSION OF UHECR IN EXPANDING
UNIVERSE



DIFFUSION EQUATION IN EXPANDING UNIVERSE
L2
Metric: ds® = Adt* — a®(t)dx = —g,dxH,
diag Juv = (_17a27a27a2)7 diag ¢"* = (—1, 1/&27 1/@27 1/0,2)7

Diffusive flux in the local frame:
0
= —-D— =1.2 .
Tk (%kn(aC t), (k=1,2,3)

Conservation of current j# :

(Vgi") =

83:”

Performing differentiation:

0 5 B
5@ 1) + 3H (t)n(Z, )—a—QV n(z,t) =0,
Including energy |osses and the source term:
on D(E,t) 5 0 CQEt) 5,
5 + 3H (t)n 2(0) vin 5E (b(E,t)n] = e 0°(Z — Zy).



Analytic solution of the diffusion equation
Equation for the Fourier components f,(E,t):

Ob(E.t) _, D(E,1)
oE Y an

0 — fu(E, 1)+ [3H(t) —

0

fu(E t) = )
The characteristic equation:
dE/dt = —b(E,1t)
coincides with equation for energy evolution. Itssolutionis
&' =E'(E,tt).
The solution of equation for f,,(E, t) with energies taken on characteristic:

= [t e 250 o)

ty ¢/




Introducing the analogue of the Syrovatsky variable

t D /! t//
)\(E,tl> — / dt// (8 9 )7
b a?(t")

we obtain for spherically symmetric case

o lae expl—x2/4\(E,2)] dE,
n(Xg’ E) = /O dz a Q[Eg (E7 Z)? Z] [47.‘_)\<E7 Z)]3/2 dE ’

dby / int y Z

dE (1 +2)exp [/O dz dz’ o’ ] |

—dt/dz =1/ [Ho(l )L+ 2)3 + A} |

to be compared with the Syrovatsky solution:

ns(B,xg) = —— | dEgQ(Ej)

1 /OO exp [—Xé/é‘:)\(E, Eg)}
b(E) /g 4r\(E, E.)%?



THREE TESTS OF THE SOLUTION

1. The solution coincides with the Syrovatsky solution when

D(E,t) = D(E), b(E,t) = bE), at)=1.

2. In case of homogeneous distribution of sources, the solution gives the universal
spectrum as must be according to propagation theorem.

3. Solution for rectilinear-propagation equation

on  c€ On on ob  Q(E,1)
Y + (D) 0F b(E,t)— +3H(t)n — n——

3(=2 =
OF 0E ~ ai(r) O & %)

obtained by the same formal method gives the correct (known) solution

Q(Eg7tg) dEg

to, B) =
n(to, £) drexs(l+ z4) dE




CONCLUSIONS

e \We obtained the analytic solution of diffusion equation for ultra-relativistic
(E =~ p) particles (electrons, protons, nuclei). The solution is valid for ex-
panding universe and for diffusion coefficient D and energy loss b with ar-
bitrary dependence on E and t.

e The method of diffusion equation is important for UHECR at low energies
E < (1 —10) x 10*® eV, where numerical simulations need unrealistically
long computation time.

o At & < 1 x 10'® eV spectrum of extragalactic protons has the diffusion
cutoff, which provides transition from extragalactic to galactic cosmic rays
at the second knee at Eqy,, ~ (0.4 —0.8) x 101® eV, as measured in different
experiments.

e The diffusive approximation gives better understanding of UHECR prop-
agation in extragalactic magnetic fields, e.g. transition to universal spec-
trum, absence of GZK cutoff in strong magnetic fields etc.

Comparison with numerical simulations (Aloisio and VB 2004 and Yoshiguchi
et al 2003) show good agreement in spectra for the range of parameters
appropriate for diffusion description.



