Observations of CR precursors in SNRs

Discovery of a Narrow (10¹⁶ cm) Precursor in Tycho: A CR Precursor?

Lee, Jae-Joon (SNU)

Introduction

• Diffusive shock acceleration requires a precursor in which particles scatter back and forth between the shock jump and MHD turbulence (e.g., Blandford and Eichler, 1987)

Introduction

- Diffusive shock acceleration requires a precursor in which particles scatter back and forth between the shock jump and MHD turbulence (e.g., Blandford and Eichler, 1987)
- Dissipation of the turbulence will heat and accelerate the gas in a precursor.

Contents

I. Balmer-dominated filaments in SNRs

II. Evidence of CR precursor from observations of Balmer-dominated filaments.

III. The case of Tycho :

Discovery of Narrow Precursor in Tycho

Balmer-dominated filament A faint optical filament whose spectrum is dominated by hydrogen Balmer lines.

Cygnus Loop : SII(R), Ha(G), OIII(B)

HST image of Balmer-dominated filaments

Balmer-dominated filament

- found in young SNRs (Vs > 1000km/s)
 - + Tycho, Kepler, SN1006 etc.
- Ha line profile shows two distinct components : narrow(-40km/s) & broad (-Vs)
- represents a non-radiative shock into a partially neutral medium.

Theory of Non-radiative Shock into a Partially Neutral Medium

- As the shock is collisionless, a neutral atom passing through the shock is not affected by electromagnetic fields at the shock transition.
- Some atoms retain their pre-shock velocity distribution, giving a narrow line profile component characteristic of the pre-shock temperature.
- Other atoms undergo charge transfer with postshock protons, giving a broad component whose line width is controlled by (and comparable to) to the shock speed

Cold IonCold Neutral

Hot Ion

Hot Neutral

NEUTRAI NEUTRAL NEUTRAL

Collisionless Shock

ION

ION

NEUTRA

The narrow component should show characteristics of the pre-shock gas

And if there is a CR precursor, the narrow component will represents this gas in the precursor which is heated and accelerated.

Broadening & Doppler Shift

Broadening

- 40km/s for most SNRs observed (e.g., Sollerman et al, 2001)
 - corresponds to T=40,000K. No neutral hydrogen expected.
 - heated in a narrow (CR) precursor?

Doppler Shift

- Long-slit observation of LMC SNRs (Smith et al. 1994) do not show doppler shift.
- Gas acceleration in the precursor (-10 km/s) is proposed for Tycho (Lee et al, 2004).

Some indications of CR precursor.

 Hα profile from CR precursor only is observed.
 Comparison w/ unperturbed medium has not been possible.

Tycho

Tycho in X-ray

• A remnant of Type Ia supernova that occurred in the year 1572 (Baade, 1945)

• Distance - 2.3 kpc

• Vs - 2,000 km/s

Ha profile

• Narrow - 40 km/s

• Broad - 2,000 km/s

Tycho in Ha (Ghavamian et al, 2000)

Photoionization Precursor

Tycho in Ha (Ghavamian et al, 2000) • Existence of Photo-Ionization Precursor (PIP, Ghavamian et al, 2000)

- Weak Ha emission (-1 pc)
- Ionized by HeII emission from postshock gas
- T ~ 12,000 K

PIP vs. Knot g

Unperturbed

PIP vs. Knot g

Perturbed

SUBARU Ha Echelle Long slit

- SUBARU 8m telescope
- Echelle : dV 10 km/s
- long slit : spatial variation of Ha profile

Ha profile of Knot g shows broadening & doppler shift relative to that of PIP

 Ha profile of Knot g shows both broadening and doppler shift relative to the PIP

• FWHM of the narrow component alone of Knot g is about 45-50 km/s.

Single Gaussian fit along the slit

Location of Shock Front

sudden increase of broad component

Location of Shock Front

- sudden increase of broad component
- Narrow precursor w/ gradual increase of intensity & FWHM

A CR precursor?

A possible CR Precursor

- Thickness -10¹⁶ cm
- Line width gradually increase from 30 km/s to 45 km/s.
- Ha intensity increase of factor a few (emissivity increase a few hundred)
- ΔVr 5 km/s (ΔV 60 130 km/s)
- Significant fraction of the line broadening is non-thermal in origin (~ 20 uG)

Thickness of the precursor is -κ/Vs, where κ is diffusion coefficient.

 \Rightarrow K ~ 2 × IO²⁵ Cm² S^{-I}

- This should be regarded a lower limit as we may have underestimated the precursor thickness
- small ΔV-100 km/s (cf. Vs 2,000 km/s) ⇒ CR pressure does not dominate the gas pressure.

It seems that the Balmer-dominated filaments is only seen where the CR acceleration is not efficient enough.

SN1006 in X-ray

Summary

- Diagnostics of Balmer-dominated shock serve as a useful tool for CR precursor study.
- Narrow (-10¹⁶ cm) precursor with gas heating and acceleration is observed in Tycho, which is likely to be a CR precursor.
- Dissipation of MHD turbulence in the precursor seems to be inefficient
- A CR pressure may not dominate Gas pressure in the Balmer-dominated filaments.

Thank you.

Instead of a precursor, can it be due to a geometrical projection?

No

Can it be other kind of precursor instead of CR precursor?

It seems NOT, but no hard evidence against this.

Gas Acceleration in Precursor

- Possible interaction with Molecular Cloud (Lee et al, 2004)
- Non-negligible velocity difference (-10 km/s)
 between MC & Ha narrow component.
- Lee et al (2004) attributed this to a gas acceleration in the precursor.

Tycho in ¹²CO(1-0) (Lee et al, 2004)