Chandra and XMM results on cluster mergers

Maxim Markevitch (CfA)

August 2004

Merger gallery

A1750

A2744

Chandra map (Kempner & David 2004)

A1914

Chandra map (Govoni et al. 2004)

A2163

Chandra map (Govoni et al. 2004)

A773

Chandra map (Govoni et al. 2004)

A2218

Chandra map (Govoni et al. 2004)

A168: ram pressure slingshot

Chandra maps (Hallman & Markevitch 2004)

 $M \simeq 0$

z=0.26

T

z=0.18

(x) Mpc

7-012

What can we learn about cluster physics?

From cold fronts:

- Thermal conduction and diffusion across fronts is suppressed (Ettori & Fabian 2000; Vikhlinin et al. 2001)
- Stability of cold fronts implies parallel magnetic field layer (Vikhlinin et al. 2001)

Thermal conduction in the bulk of the gas

A754

Time for *T* variations to disappear (for Spitzer \varkappa):

$$t_{\rm cond} \sim \frac{k n_e l^2}{\varkappa} \simeq 1.2 \times 10^7 {\rm yr}$$

Age of the structure:

$$t_{\rm age} \sim \frac{L}{c_s} \sim 5 \times 10^8 {\rm yr}$$

Conduction suppressed by factor

$$\frac{t_{\rm age}}{t_{\rm cond}} > 10 \ h_{65}^{1/2}$$

Chandra map (Markevitch et al. 2003)

A3667, a prototype cold front

Chandra image: Vikhlinin et al. (2001)

XMM map: Briel, Finoguenov, & Henry (2004)

Cold front simulations

Heinz et al. (2003)

A3667

• Can put lower limit on gas viscosity?

z=0.3

1E 0657–56: shock front

• from density jump, $M = 3.2 \pm 0.7$, or v = 4500 km s⁻¹

Weak lensing mass map (Clowe et al. 2004)

1E 0657–56

0

Offset between gas and mass peaks \rightarrow Dark Matter exists! (Clowe et al. 2004)

1E 0657–56: Dark Matter self-interaction cross-section

DM collisional cross-section per unit mass can be constrained from

- offset between gas and mass
- no offset (within errors) between mass and galaxies
- large velocity of the subcluster
- consistency of the subcluster's M/L ratio with the universal value

The best (order of magnitude) constraint from these methods is

$$\frac{\sigma}{m} < 1 \ \mathrm{cm}^2 \,\mathrm{g}^{-1}$$

(Markevitch et al. 2004)

A520

A520

Chandra maps (Markevitch et al. in prep.)

A520

Chandra maps (Markevitch et al. in prep.)

A520

Chandra maps (Markevitch et al. in prep.)

z=0.3

Destruction of a dense core in a high-*M* **merger**

Cluster radio halos

(from X-ray observer's perspective)

Cluster radio halos

- Synchrotron radiation from $\gamma \sim 10^4$ electrons
- Very short lifetime $(10^7 10^8 \text{ yr})$, yet halos are very extended
- Probably generated by cluster mergers but how exactly (shocks or turbulence)?

Theoretical arguments against acceleration on shocks with M < 3 - 5(Brunetti 2002; Gabici & Blasi 2003)

Observations — compare halo brightness with gas temperature maps (Markevitch & Vikhlinin 2001; Govoni et al. 2004)

1E 0657–56

• Radio brightness correlates with gas temperature — shock acceleration?

umT CF 754sh

Shock front in A520

Chandra data (Markevitch et al. in prep.)

Shock front in A520

Chandra data (Markevitch et al. in prep.)

Summary

- *Chandra* and *XMM* temperature maps for many clusters can study dynamic of individual mergers in great detail
- Observe destruction of dense cool cores in mergers at high resolution
- Can use shock fronts, cold fronts and *T* maps as tools to study cluster physics:
 - o upper limit on thermal conductivity (in bulk of gas, *×* < 0.1 Spitzer at 10 keV)
 o structure and strength of magnetic fields (at cold fronts)
 - independent limit on DM collisional cross section $(\sigma/m < 1 \text{ cm}^2 \text{ g}^{-1})$... and proof of DM existence!

• coming soon: test of electron-ion equilibration timescale

• A520 and 1E 0657–56 are the objects to study acceleration on shocks

Radial gas temperature profiles

Radial gas temperature profiles

• Necessary for total mass derivation:

$$M_{\rm tot}(r) \propto -r T_g(r) \left(\frac{d \log T_g}{d \log r} + \frac{d \log \rho_g}{d \log r} \right)$$

• Measurements difficult and contradictory

Decline at large *r*:

• ASCA (Markevitch et al. 1996, ...)

• SAX (De Grandi & Molendi 2001)

Profiles consistent with isothermal, or vary:

• ASCA, different method (White 2000)

• SAX, different method (Irwin & Bregman 2000)

• early XMM results (Arnaud et al., Pratt et al.)

Temperature profiles from *Chandra*

Nine well-observed nearby clusters with T = 0.8 - 8 keV (Vikhlinin et al. in prep.)

Temperature profiles from *Chandra*

Nine well-observed nearby clusters with T = 0.8 - 8 keV (Vikhlinin et al. in prep.)

Temperature profiles from *Chandra*

Nine well-observed nearby clusters with T = 0.8 - 8 keV (Vikhlinin et al. in prep.)

Summary

- *Chandra* and *XMM* temperature maps for many clusters can study dynamic of individual mergers in great detail
- Observe destruction of dense cool cores in mergers at high resolution
- Can use shock fronts, cold fronts and *T* maps as tools to study cluster physics:
 - o upper limit on thermal conductivity (in bulk of gas, *×* < 0.1 Spitzer at 10 keV)
 o structure and strength of magnetic fields (at cold fronts)
 - independent limit on DM collisional cross section $(\sigma/m < 1 \text{ cm}^2 \text{ g}^{-1})$... and proof of DM existence!
 - coming soon: test of electron-ion equilibration timescale
- A520 and 1E 0657–56 are the objects to study acceleration on shocks
- Radial *T* profiles decline by $\times 2$ between 0.1 0.6 r_{180}

Cold fronts

Cold fronts

(Markevitch et al. 2000)

A754

ROSAT PSPC image (Krivonos et al. 2003)

A754

ROSAT PSPC image (Krivonos et al. 2003)

• from density jump, $M \simeq 1.5 - 1.7$

XMM T map (Henry, Finoguenov, & Briel 2004)