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ABSTRACT

We discuss diffusion of particles in turbulent flows. In hydrodynamic turbulence, it is well known
that distance between two particles imbedded in a turbulent flow exhibits a random walk behavior.
The corresponding diffusion coefficient is ∼ vinj lturb, where vinj is the amplitude of the turbulent
velocity and lturb is the scale of the turbulent motions. It is not clear whether or not we can use a
similar expression for magnetohydrodynamic turbulence. However, numerical simulations show that
mixing motions perpendicular to the local magnetic field are, up to high degree, hydrodynamical. This
suggests that turbulent heat transport in magnetized turbulent fluid should be similar to that in non-
magnetized one, which should have a diffusion coefficient ∼ vinj lturb. We review numerical simulations
that support this conclusion. The application of this idea to thermal conductivity in clusters of galaxies
shows that this mechanism may dominate the diffusion of heat and may be efficient enough to prevent
cooling flow formation when turbulence is vigorous.
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I. ASTROPHYSICAL MOTIVATION

It is well known that Astrophysical fluids are turbu-
lent and that magnetic fields are dynamically impor-
tant. One characteristic of the medium that magnetic
fields and turbulence may substantially change is the
heat transfer.

There are many instances when heat transfer through
thermal conductivity is important. For instance, ther-
mal conductivity is essential in rarefied gases where ra-
diative heat transfer is suppressed. This is exactly the
situation that is present in clusters of galaxies. It is
widely accepted that ubiquitous X-ray emission due to
hot gas in clusters of galaxies should cool significant
amounts of the intracluster medium (ICM) and this
must result in cooling flows (Fabian 1994). However,
observations do not support the evidence for the cool
gas (see Fabian et al. 2001) which is suggestive of the
existence of heating that replenishes the energy lost via
X-ray emission. Heat transfer from the outer hot re-
gions can do the job, provided that the heat transfer is
sufficiently efficient.

Gas in clusters of galaxies is magnetized and the
conventional wisdom suggests that the magnetic fields
strongly suppress thermal conduction perpendicular to
their direction. Realistic magnetic fields are turbulent
and the issue of the thermal conduction in such a situa-
tion has been long debated. A recent paper by Narayan
& Medvedev (2001) obtained estimates for the thermal
conductivity of turbulent magnetic fields, but those es-
timates happen to be too low to explain the absence of
cooling flows for many of the clusters of galaxies (Za-
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kamska & Narayan 2002).
Narayan & Medvedev (2001) treat the turbulent

magnetic fields as static. In hydrodynamical turbu-
lence it is possible to neglect plasma turbulent motions
only when the diffusion of electrons which is the prod-
uct of the electron thermal velocity velect and the elec-
tron mean free path in plasma lmfp, i.e. velectlmfp, is
greater than the turbulent velocity vturb times the tur-
bulent injection scale linj , i.e. vturblinj . If such scaling
estimates are applicable to heat transport in magne-
tized plasma, the turbulent heat transport should be
accounted for heat transfer within clusters of galax-
ies. Indeed, data for velectlmfp given in Zakamska
& Narayan (2002; Narayan & Medvedev 2001) pro-
vide the classical Spitzer (1962) diffusion coefficient
κSp ≡ velectlmfp ∼ 6.2 × 1030 cm2 sec−1 for the inner
region of R ∼ 100kpc and κSp ≡ velectlmfp ∼ 3.6×1029

cm2 sec−1 for the very inner region of R ∼ 10kpc (for
Hydra A). If turbulence in the cluster of galaxies is of
the order of the velocity dispersion of galaxies, while
the injection scale is of the order of 20 kpc, the diffu-
sion coefficient is ∼ vturblinj ∼ 3.1 × 1030 cm2 sec−1,
where we take vturb ∼ 500 km/sec.

In this paper, we review numerical simulations of
thermal diffusion in magnetized turbulence flows. This
topic has broad astrophysical applications. Clusters
of galaxies are just one of the examples where non-
radiative heat transfer is essential. This process is also
important for many regions within galactic interstellar
medium, e.g. for supernova remnants.
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II. SEPARATION OF TWO PARTICLES IN
HYDRODYNAMIC TURBULENCE

To understand transport of a passive scalar in turbu-
lent flows, let us consider two mass-less particles first.
Let the distance between the particles be l. We assume
that ld < l < linj , where ld is the dissipation range and
linj is the energy injection scale.

Kolmogorov theory provides a scaling law for incom-
pressible non-magnetized hydrodynamic turbulence. The
beauty of the Kolmogorov theory that it does provide
a simple scaling for hydrodynamic motions. If the ve-
locity at a scale l from the inertial range is vl, the Kol-
mogorov theory states that the kinetic energy (ρv2

l ∼ v2
l

as the density is constant) is transferred to next scale
within one eddy turnover time (l/vl). Thus within the
Kolmogorov theory the energy transfer rate (v2

l /(l/vl))
is scale-independent,

v2
l

tcas
∼ v2

l

(l/vl)
= constant, (1)

and we get the famous Kolmogorov scaling

vl ∝ l1/3. (2)

An equivalent description is to express spectrum E(k)
as a function of wave number k (∼ 1/l). The two de-
scriptions are related by kE(k) ∼ v2

l . The famous Kol-
mogorov spectrum is E(k) ∼ k−5/3.

We are interested in the time evolution of the sep-
aration l. Since the separation shows a random walk
behavior with stance of vldt, we can write

dl2

dt
∼ (l + vldt)2 − (l − vldt)2

dt
∼ lvl, (3)

where we ignore constants of order unity. Using ε ∼
v3

l /l, we get
dl2

dt
∼ l(εl)1/3, (4)

where ε is the energy injection rate. This leads to

l2/3 − l
2/3
0 = (CR)1/3ε1/3(t− t0), (5)

where CR is Richardson constant. When l À l0, we
can write

l2 = CRε(t− t0)3, (6)

which was first discovered by Richardson (1926). Re-
cent direct numerical simulations suggest that CR ∼ 1.
Boffetta & Sokolov (2002) obtained CR ∼ 0.55. Ishi-
hara & Kaneda (2001) obtained CR ∼ 0.7.

The above argument suggests that the separation
l shows a random-walk-like behavior. (However, the
stance depends on the separation in this case.) There-
fore the diffusion coefficient is given by

κdynamic ∼
{

lvl when l < linj ,
linjvturb when l > linj .

(7)
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Fig. 1.— Intermittency. Our result (denoted by the filled
circles) suggests that MHD turbulence looks like ordinary
hydrodynamic turbulence when viewed across the local field
lines. SL represents the original She-Leveque model for or-
dinary hydrodynamic turbulence. IK and MB stand for the
IK theory (see Politano & Pouquet 1995) and the Müller-
Biskamp model (2000) respectively. Error bars are for 1-σ
level. From Cho, Lazarian, & Vishniac (2002).

Astrophysical flows are magnetized. Hall (1949) and
Hiltner (1949) discovered magnetic fields in the inter-
stellar medium and Kim et al. (1989) detected mag-
netic fields in the ICM. Therefore, we cannot use this
above relations without justification.

Then, can we have expressions similar to those in
equation (7) in MHD case? To answer this question,
we must consider velocity statistics in MHD turbulence.
We are particularly interested in the motions perpen-
dicular to the local magnetic field direction. Earlier
numerical studies by Cho, Lazarian & Vishniac (2002)
revealed a good correspondence between hydrodynamic
motions and motions of fluid perpendicular to the local
direction of magnetic field (see Figure 1). The symbols
represent scaling exponents, ζp, of the (longitudinal)
velocity structure functions

Sp =< ([v(x + r)− v(x)] · r̂)p >∝ rζp . (8)

The open circles are for the hydrodynamic turbulence:
She & Leveque (1994) proposed a scaling relation:
ζSL
p = p/9+2[1−(2/3)p/3], which is in good agreement

with experiments. The filled circles, which represent
the scalings exponents for perpendicular directions in
MHD turbulence, coincide well with the hydrodynamic
ones.

This surprising result can be understood in terms of
the eddies in the planes perpendicular to magnetic field
lines (see discussion in Cho, Lazarian & Vishniac 2002).
Lazarian & Vishniac (1999) showed that the eddies will
not be forming magnetic knots if the reconnection is
as fast as the stochastic reconnection scheme suggests.
This means that the motions of the magnetized fluid
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will be very similar to the hydrodynamic motions in the
planes perpendicular to the local direction of magnetic
field.

To what extend heat transfer in a turbulent medium
is affected by a magnetic field is the subject of the
present study. To solve this problem we shall systemat-
ically study the passive scalar diffusion in a magnetized
turbulent medium, compare results of MHD and hydro-
dynamic calculations, and investigate the heat transfer
perpendicular and parallel to the mean magnetic field
for magnetic fields of different intensities.

III. NUMERICAL METHODS

We use a 3rd-order hybrid essentially non-oscillatory
(ENO) upwind shock-capturing scheme to solve the
ideal MHD equations. To reduce spurious oscillations
near shocks, we combine two ENO schemes. When
variables are sufficiently smooth, we use the 3rd-order
Weighted ENO scheme (Jiang & Wu 1999) without
characteristic mode decomposition. When the oppo-
site is true, we use the 3rd-order Convex ENO scheme
(Liu & Osher 1998). We use a three-stage Runge-Kutta
method for time integration. We solve the ideal MHD
equations in a periodic box:

∂ρ

∂t
+∇ · (ρv) = 0, (9)

∂v
∂t

+ v · ∇v +
1
ρ
∇(a2ρ)− (∇×B)×B

4πρ
= f , (10)

∂B
∂t

−∇× (v ×B) = 0, (11)

with ∇ · B = 0 and an isothermal equation of state.
Here f is a random large-scale isotropic driving force,
ρ is density, v is the velocity, and B is magnetic field.
We drive turbulence using 21 (solenoidal) Fourier com-
ponents with 2 < k <

√
12, where k is wavenumber.

Each forcing component has correlation time of one.
The resulting turbulence is statistically isotropic. The
rms velocity vturb is maintained to be approximately
unity, so that v can be viewed as the velocity mea-
sured in units of the r.m.s. velocity of the system and
B/
√

4πρ as the Alfvén velocity in the same units. The
time t is roughly in units of the large eddy turnover
time (∼ linj/vturb) and the length in units of linj , the
scale of the energy injection. The magnetic field con-
sists of a uniform background field and a fluctuating
field: B = B0 + b.

We use a passive scalar ψ(x) to trace thermal parti-
cles. We inject a passive scalar with a Gaussian profile:

ψ(x, t = t0) ∝ exp−(x−x0)
2/σ2

0 , (12)

where σ0= 1/16 of a side of the numerical box and x0

lies at the center of the computational box. The value
of σ0 ensures that the scalar is injected in the inertial
range of turbulence. The energy injection scale (linj)

is ∼ 1/2.5 of a side of the numerical box. The scalar
field follows the continuity equation

∂ψ

/
∂t +∇ · (ψv) = 0. (13)

We are mainly concerned with time evolution of σi

(i=x, y, and z):

σ2
i =

∫
(xi − x̄i)2ψ(x, t)d3x∫

ψ(x, t)d3x
, (14)

where

x̄i =
[∫

xψ(x, t)d3x/

∫
ψ(x, t)d3x

]
. (15)

Common wisdom was that the mean magnetic field sup-
presses diffusion in the direction perpendicular to it. If
this is the case, we expect to see σ⊥ < σ‖. Otherwise,
we will get σ⊥ ∼ σ‖.

We inject passive scalars after turbulence is fully de-
veloped. Fig. 2(a) shows when we inject the passive
scalars. For the hydrodynamic run with Ms = 0.3,
where Ms is the sonic Mach number, and 1923 grid
points (thick solid line), we inject passive scalars 5
times. The injection times are marked by arrows. We
also mark the injection times by arrows for the MHD
run with VA (= B0/

√
4πρ) = 1, Ms = 0.3, and 1923

grid points (thin solid line for < V 2 > and dashed line
for < b2/(4πρ) >).

IV. THEORETICAL CONSIDERATIONS

Let us consider two massless particles in MHD tur-
bulence. As in the hydrodynamic case, we expect that
the separation follows

dl2

dt
∼ (l + vldt)2 − (l − vldt)2

dt
∼ lvl. (16)

Since perpendicular motions are hydrodynamic (Cho,
Lazarian, & Vishniac 2002), we will arrive at the same
Rechardson’s law:

l2/3 − l
2/3
0 = (CR)1/3ε1/3(t− t0), (17)

where CR is Richardson constant for MHD.
When we inject a passive scalar field as in equation

(12), we may write

σ2/3 − σ
2/3
0 = (C1)1/3ε1/3(t− t0),

= C2vturb(t− t0), (18)

where σ = (σ2
x + σ2

y + σ2
z)1/2 and the dimensionless

constant C1 is not necessarily the same as CR. The
constant C2 ∝ (C1/linj)1/3 has dimension. In this pa-
per, we do not attempt to obtain C1 or CR. Instead,
we investigate how C2 behaves when we vary B0.
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Usually it was considered that MHD turbulence is
different from its hydrodynamic counterpart. How-
ever, as we discussed earlier, Cho, Lazarian, & Vish-
niac (2002) showed that motions perpendicular to the
local mean fields are hydrodynamic to high order. This
means that many turbulent processes are as efficient as
hydrodynamics ones. For example, Cho et al. (2002)
numerically showed that cascade timescale in MHD
turbulence follows hydrodynamic scaling relations (see
also Maron & Goldreich 2001). The similarity between
magnetized and unmagnetized turbulent flows moti-
vates us to speculate that turbulent mixing is also ef-
ficient in MHD turbulence. This is why we may use
equation (18), which is derived from hydrodynamic tur-
bulence. It is worth noting that these facts are consis-
tent with a recent model of fast magnetic reconnection
in turbulent medium (Lazarian & Vishniac 1999).

V. RESULTS

In Figure 2, we compare the time evolution of σ in
hydrodynamic case and in MHD case. In the MHD
cases, we vary the Alfven velocity of the mean field
(VA = B0/

√
4πρ). When VA = 1, the Alfven velocity

of the mean field is slightly larger than the rms fluid
velocity (vturb ∼ 0.7). This is so-called subAlfvenic
regime. The case of VA = 0.1 corresponds to the super-
Alfvenic regime. Our results show that vturb ∼ 1 in the
hydrodynamic case and vturb ∼ 0.7 in the MHD case.

In Figure 2(a), we compared the diffusion rate of the
passive scalar. The figure shows that there are good
relations between σ2/3 and (t − t0). The slopes corre-
spond to the constant C2 in equation (18). The slopes
are very similar and this enables us to write

κdynamic = Cdynlinjvturb, (19)

where Cdyn is a constant of order unity. This is the
effective diffusion by turbulent motions suitable for
scales larger than linj . The value of Cdyn remains al-
most constant for B0’s of up to equipartition value,
B0/

√
4πρ ∼ vturb (∼ b/

√
4πρ). The exact value of

Cdyn is uncertain. In hydrodynamic cases, Cdyn is of
order of ∼ 0.3 (see Lesieur 1990 chapter VIII and ref-
erences therein).

Figure 2(b) shows that diffusion rate does not
strongly depend on the direction of the mean field.
When the mean magnetic fields are strong (as in Fig-
ure 2(b)), the local magnetic field at any given point in
the computation box has a preferred direction (i.e. x-
direction). On average, the angle between the magnetic
field and x-axis is around tan−1(b/B0) ∼ 30◦, where we
use b ∼ 0.6 and B0 = 1. Therefore, the parallel and
perpendicular conductivity based on the mean field is
statistically the same as that based on the local mag-
netic field.

VI. ASTROPHYSICAL IMPLICATIONS

We have shown that turbulence motions provide ef-
ficient mixing in MHD turbulence. In this section, we
show that this process is as efficient as that proposed
by Narayan & Medvedev (2001) for some clusters.

We summarize models of thermal diffusion in Fig. 3.
In the classical picture, thermal diffusion is highly sup-
pressed in the direction perpendicular to B0. Transport
of heat along wondering magnetic field lines (Narayan
& Medvedev 2001) partially alleviates the problem.
But the applicability of Narayan & Medvedev’s model
is a bit restricted - their model requires strong (i.e.
VA ≡ B0/

√
4πρ ∼ vturb) mean magnetic field. In the

Galaxy, there are strong mean magnetic fields. But, in
the ICM, this is unlikely. When the mean field is weak,
the scales smaller than the characteristic magnetic field
scale (≡ lB) may follow the Goldreich & Sridhar model
(1995). However, this requires further studies. Our tur-
bulent mixing model gives the same κdynamic regardless
of magnetic field geometry.

ICM — As we mentioned earlier, κSp ∼ 1.3 × 1030

(kT/keV )5/2 (n/10−3cm−3)−1cm2sec−1 and κdynamic

∼ 3.1 × 1030 (vturb/500km/s)(linj/20kpc)cm2sec−1.
The ratio of the two is of order unity for the ICM:

fICM ≡ κdynamic/κSp ∼ O(1). (20)

To be specific, for Hydra A, f ∼ 0.5 for the inner region
(R ∼ 100kpc) and f ∼ 8.6 for the very inner region
(R ∼ 10kpc). For 3C 295, f ∼ 0.34 for the inner region
and f ∼ 24 for the very inner region.

Our model deals with thermal diffusion in fully
developed MHD turbulence with vturb ∼ 500km/sec.
When turbulence is not fully developed or vturb is
smaller, we expect a lower thermal conductivity. The
observed temperature inhomogeneities in several clus-
ters may indicate that turbulence in the clusters is ei-
ther under-developed or very weak.

Local Bubble and SNRs — The Local Bubble is a hot
(T ∼ 106K; kT ∼ 100 eV), tenuous (n ∼ 0.008/cm3)
cavity immersed in the interstellar medium (Berghofer
et al 1998; Smith & Cox 2001). Turbulence parameters
are uncertain. We take typical interstellar medium val-
ues: linj ∼ 10 pc and vturb ∼ 5 km/sec. For these
parameters, the ratio of κdynamic to κSp is

fin = κdynamic/κSp ∼ 0.05, (21)

for the inside of the Local Bubble. For the mixing
layers, it is

fmix = κdynamic/κSp ∼ 100, (22)

where we take T̄ ∼ √
TcTh ∼ 105K, n̄ ∼ √

ncnh ∼
0.1/cm3 (Begelman & Fabian 1990), Tc ∼ 104K, nc ∼
1/cm3, Th ∼ 106K, and nh ∼ 0.008/cm3. We expect
similar results for supernova remnants since parameters
are similar.
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(a) (b)

Fig. 2.— Time evolution of energy density and σ. Passive scalars are injected after turbulence is fully developed. (a)

(σ2/3 − σ
2/3
0 )/Vturb vs. time. σ is the standard deviation of the passive scalar field. Y-axis is in the unit of box-size and

Y-values are shifted by 0.3 units for convenience. Note that the slope does not strongly depend on the mean field strength
VA (= B0/

√
4πρ) or sonic Mach number Ms. (b) MHD run with 2163 grid points, Ms ∼ 2.3, and VA = 1. σi (i=x, y, and

z) vs. time. Solid lines=parallel to B0; dashed and dotted lines=perpendicular to B0. From Cho et al. (2003).

(a) (b) (c)

Fig. 3.— Models of thermal diffusion. (a) Classical picture. κ⊥ ¿ κSp. (b) Narayan & Medvedev (2001). Wandering
of field lines provides efficient diffusion (κ⊥ ∼ κSp/5) in the direction perpendicular to B0. But, the model assumes B0 of
∼ equipartition value. (c) Turbulent diffusion model. Thermal electrons are mixed by turbulent motions, which leads to
turbulent diffusion coefficient of κdynamic ∼ vturblinj . In many astrophysical situations, this coefficient is comparable with
the Spitzer value. The figure is the snapshot of the passive scalar field at t∼3 from the MHD run described in Figure 1(c);
1923 grid points, Ms ∼ 0.3, and VA = 1. In the case shown here, the mean field is strong and parallel to to the dashed line.
In general, mean magnetic fields, weak or moderately strong, do not strongly suppress turbulent motions/diffusion. From
Cho et al. (2003).
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VII. CONCLUSION

We have shown that magnetic fields (either random
or mean magnetic field of up to equipartition value) do
not suppress turbulent diffusion processes, which im-
plies that turbulent diffusion coefficient has the form
κdyn ∼ linjvturb in MHD turbulence, as well as in hy-
drodynamic cases. This result has two important astro-
physical implications. First, in the ICM, this turbulent
diffusion coefficient is of the same order of the classical
Spitzer value. Second, in the face of hot and cold me-
dia in the ISM (e.g. the boundary between the Local
Bubble and surrounding warm media), this turbulent
diffusion coefficient is much larger than the classical
Spitzer value.
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