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ABSTRACT

This paper describes some recent developments in our understanding of particle acceleration by
shocks. It is pointed out that while good agreement now exists as to steady nonlinear modifications to
the shock structure, there is also growing evidence that the mesoscopic scales may not in fact be steady
and that significant instabilities associated with magnetic field amplification may be a feature of strong
collisionless plasma shocks.
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I. INTRODUCTION

There is a fundamental problem associated with
charged particle acceleration in astrophysical environ-
ments. Only the electric part of the electromagnetic
field does work on a charged particle and thus pure
magnetic fields, while great at deflecting particles, are
useless at accelerating them. But in most astrophysi-
cal environments there is a strongly conducting plasma
which shorts out any electric field; more precisely the
MHD approximation, which amounts to saying that the
electric field vanishes in a frame moving with the local
plasma velocity,

E + U×B = 0 (1)
where U is the bulk plasma velocity, E the electric field
and B the magnetic field, holds almost everywhere.
Thus on the face of it particle acceleration in an as-
trophysical environment is virtually impossible (imag-
ine asking a terrestrial accelerator engineer to design
a particle accelerator made entirely out of copper with
no insulating materials!). Yet observation shows that
nonthermal populations of accelerated charged parti-
cles are ubiquitous in astrophysical and space plasmas.
There are two ways out of this dilemma. One is to look
for environments (such as pulsar magnetospheres or re-
gions of magnetic reconnection) where ideal MHD does
not apply and where strong electric fields can be gen-
erated which one can then attempt to use for particle
acceleration. The other is to recognise that even if the
electric field vanishes in all the local plasma frames,
in general there will be no global frame where this
holds. This is the fundamental idea behind Fermi ac-
celeration. An ideal MHD system, with magnetic fields
frozen into the fluid, can still accelerate particles by
coupling the macroscopic fluid motions through inter-
actions with the magnetic field to the microscopic level
of the accelerated particles. Indeed, as Fermi (1949)
pointed out, as soon as such a coupling is established,
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acceleration is essentially inevitable on thermodynamic
grounds because the individual charged particles at-
tempt to reach energy equipartition with macroscopic
modes of the system.

A more formal approach to this is to consider a popu-
lation of charged particles, which already have sufficient
energy to have gyroradii much larger than the ther-
mal ion gyroradii and other microscopic plasma length
scales, interacting with a nonuniform magnetic field
and thermal plasma described by conventional MHD.
Interaction with the magnetic field is very effective in
isotropising the particle distribution so that, in the lo-
cal plasma rest frame, one can take the distribution
function of the energetic particles as being isotropic to
first order,

f(p) ≈ f(p), p = |p| (2)

where p is the energetic particle momentum. The other
effect of this strong scattering is to make the transport
diffusive so that, on scales large compared to the scat-
tering scales, spatial transport is dominated by advec-
tion with the bulk plasma and a diffusion flux propor-
tional to the particle density gradient. It is important
to notice that in this approach we are implictly using
a mixed coordinate system; the bulk plasma motion v
is measured in one inertial frame, but the particle mo-
menta p are measured in a frame comoving with the
local plasma. This means that when particles move
from one point to another in space, there is an associ-
ated change of reference frame for measuring momen-
tum (or energy). When calculated systematically this
turns out to be equivalent to an acceleration term pro-
portional to the convergence of the flow. In essence this
is nothing more than Lioville’s theorem; phase space
volume is conserved, so if you squeeze physical space,
there must be a corresponding expansion in momen-
tum space. The final result is the well-known and de-
ceptively simple equation (Parker, 1965; Dolginov and
Toptyghin, 1966; for a systematic recent treatment see
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the monograph by Schlickeiser, 2002)

∂f

∂t
+ U · ∇f = ∇ (κ∇f) +

1
3
∇ ·Up

∂f

∂p
. (3)

where κ is the diffusion tensor (this neglects any veloc-
ity of the scattering magnetic structures relative to the
plasma, which in the general case can introduce some
slight complications and a momentum-space diffusion
representing classical second order Fermi acceleration;
these terms are unimportant for this discussion).

The key point is a remarkably simple one; accelera-
tion occurs where the plasma is compressed (and decel-
eration occurs where the plasma expands). Again this
does not look very promising. On average compression
and expansion in a finite system of fixed overall size
have to balance. However this neglects the essential
nonlinearity of fluid dynamics. Because signal propa-
gation speeds increase with compression, the nonlinear
terms in the dynamical equations cause compressive
motions to steepen into shocks whereas expansive mo-
tions disperse. Thus in a general plasma system subject
to strong mechanical disturbances the bulk of the com-
pression occurs in sharp localised shock structures. The
importance of this is that some of the particles which
are swept through the shock, compressed and acceler-
ated can then diffuse back and get further accelerated,
and some of these can repeat the process, and so on.
This recycling does not occur in expansion fans because
these are smooth structures on scales much larger than
the diffusion length. Another way of thinking about
this is that the entropy production (deriving from the
stochistic nature of the diffusion back across the shock)
is confined to the compressive structures (the shocks)
whereas the expansive structures remain adiabatic.

Formally (Krymsky, 1977; Axford, Leer and Skadron,
1977; Blandford and Ostriker, 1978; Bell, 1978a,b) one
can simply solve equation 3 for a step discontinuity
in velocity, but it is slightly more physical to think in
terms of particle fluxes. One way of expressing the fact
that all acceleration (at this level of description) derives
from compression is to note that there is an upwards
flux of particles in momentum space given by

Φ(p) =
∫

4π

3
p3f(p)(−∇ ·U) d3x (4)

and that at a shock discontinuity, where formally the
convergence is a Dirac delta distribution,

Φ(p) =
4πp3

3
f0(p)n · (U1 −U2) (5)

where f0(p) is the distribution at the shock, n is the
shock normal, and U1 and U2 are the upstream and
downstream flow velocities. Thus there is a localised
flux of particles upwards in momentum associated with
each element of the shock surface. We can now simply
write down a conservation relation for particle num-
ber. The divergence of this upwards flux in momentum

must exactly balance the loss of particles from the ac-
celeration region by advection downstream (it is easy
to show that in a steady state the distribution down-
stream is equal to that at the shock and thus the loss by
advection downstream can also be expressed in terms
of f0),

∂Φ
∂p

= −4πp2f0(p)n ·U2 (6)

and with the above expression for Φ(p) one easily finds
that the steady solution is a power-law spectrum,

f(p) ∝ p−3r/(r−1) (7)

where r is the compression ratio of the shock. For
strong shocks in an ideal gas of particles without inter-
nal degrees of freedom the compression is 4 and thus
we expect f(p) ∝ p−4 or a differential energy spectrum
N(E) ∝ E−2 for relativistic particles. Thus very gen-
erally we expect that shocks will be associated not just
with acceleration, but with the production of power-
law spectra with exponents close to those observed in
many sources. Note that we have tacitly assumed that
there is some source of particles at low energies to start
the whole process off. This is the issue of injection to
which we will return later. It is also clear that the
process cannot continue indefinitely to ever higher en-
ergies. At some point the length and time scales as-
sociated with the acceleration will become comparable
to those of the plasma system driving the shock and at
this point the model assumption of an isolated planar
shock will surely break down.

A simple extension of the above argument gives the
so-called box model for particle acceleration which has
proven a very useful approximation in a number of con-
texts (Drury et al, 1999). Instead of writing down a
steady state balance equation we imagine the acceler-
ated particles as occupying a region extending approx-
imately one diffusion length on either side of the shock
and write down a time-dependent equation for the num-
ber of particles in this ”acceleration box”. Remarkably
this very simple approximation gives the correct result
for the acceleration time scale and has given useful in-
sight into what happens when one has acceleration and
energy loss processes operating simultaneously.

II. NONLINEAR THEORY

The above is a very rapid introduction to the well
established test-particle theory of shock acceleration
where one ignores any reaction of the particle accel-
eration on the shock structure. However this is obvi-
ously inconsistent on both observational and theoreti-
cal grounds. In at least one major potential applica-
tion of the theory, to the acceleration of the Galactic
cosmic rays in supernova remnant shocks, the energet-
ics require that a significant amount,certainly of order
10% and probably more like 30% of the available en-
ergy go into cosmic ray production. Clearly if the ac-
celeration is taking such a significant amount of the
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system energy reaction effects need to be considered.
On the theoretical side, one of the great attractions of
the theory of shock acceleration is that it has a nat-
ural injection process built in. While much work still
needs to be done on the theory of strong collisionless
shocks there is broad agreement that as part of the col-
lective dissipation in the plasma significant number of
nonthermal particles are produced in a high-energy tail
to the shock heated particle distribution with sufficient
energy to form a seed population for further accelera-
tion by the diffusive process sketched above. The total
particle pressure is

P =
∫

4πp2 pv

3
f(p) dp ∝

∫
p4vf(p) d ln(p) (8)

where v is the particle velocity corresponding to the
momentum p. The integrand is sketched in Fig 1 for
the case f(p) ∝ p−4 and it is clear that even very small
amounts of injection lead to a very considerable pres-
sure in the accelerated particle population. Thus in

"Thermal" particles

Non−thermal particles

Fig. 1.— A sketch of the pressure integrand in equation 8
for the test-particle case f(p) ∝ p−4 plotted as a function of
ln(p) and so that the pressure is proportional to the area un-
der the curve. Note that in this case the tail on the thermal
distribution rises exponentially in the non-relativistic region
v ∝ p before saturating in the relativistic region v ≈ c

general reaction effects are almost certainly needed to
throttle back the injection to a level that the overall
shock structure can accommodate. The problem is not
to get particles into the acceleration process, but to
restrict their numbers to a reasonable level. Again, re-
ferring to the case of cosmic rays at supernova remnant
shocks, simple estimates show that at most about 10−4

of the protons flowing into such a shock can become
cosmic ray particles within the available energy bud-
get.

The reaction effects are actually quite easy to model
at the level of mathematical formulation. One only
needs to take the standard hydrodynamic (or magne-
tohydrodynamic) equations and include the additional
pressure of the accelerated particles (defined as above

by an integral over the distribution function) in the mo-
mentum equation, then solve this system along with the
transport equation. Unfortunately this is not as easy
as it looks. However a number of approaches have been
used. The obvious one is to simply throw the problem
at the computer and attempt a brute force calculation
using familiar techniques from computational fluid dy-
namics (eg, Duffy, 1994; Dorfi, 1990; Kang and Jones,
1995; Falle and Giddings, 1987). Another closely re-
lated approach is to go to a particle level description
and attempt a self-consistent Monte-Carlo simulation
of the acceleration, this approach is particularly asso-
ciated with Ellison and his coworkers (eg Jones and
Ellison, 1991; Berezhko and Ellison, 1999). An inter-
esting technique, but one which I will not discuss here
because it has been well covered elsewhere, is the two-
fluid approach where one treats the accelerated parti-
cles as a second ”fluid” with energy and pressure but
no mass. Berezhko and his collaborators (eg Berezhko
et al, 1994) have shown that if one abandons the idea
of a general purpose code and writes a code specifically
for a special case (the supernova blast wave) with a
suitably adapted mesh much better performance can
be achieved (at the price of course of a loss of general-
ity), And finally, if one is courageous, one can attempt
a semi-analytic treatment (Malkov, 1997). The good
news is that out of these very different approaches a
general consensus has developed as to the main features
of nonlinear shock acceleration. On the intermediate
scales we are considering the shock develops a precur-
sor region ahead of the shock where the incoming flow
is decelerated by the rising particle pressure, followed
by a genuine collisionless plasma subshock. The total
shock compression is substantially increased, both be-
cause the accelerated relativistic particles have a softer
equation of state and because there are energy losses
associated with the acceleration.

Why is the problem difficult? Basically for the same
reason that turbulence is difficult; the physics occurs
on a very wide range of scales none of which can be
neglected. This is a numerical nightmare because any
straightforward code has to simultaneously resolve fea-
tures on both very small and fast scales and very large
and slow scales. However the very fact that the scales
are so widely separated (in the cosmic ray case the
length scales are separated by a factor of order 108) sug-
gests that there is some hope for an analytic approach.
Basically one can distinguish two extreme scales. There
is the outer scale of the macroscopic system and the
particles of maximum energy, dictated by the astro-
physical model, and there is the inner scale of kinetic
effects and the collisionless shock physics determined
by plasma parameters (thermal particle gyroradii etc).
The aim for a semi-analytic theory should be to act as
a bridge between these two extreme scales, but not to
attempt to describe either the microphysics of the col-
lisionless shock and the injection process or the gross
dynamics of the system and the upper cut-off to the
accelerated particle spectrum.
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This more modest aim is then much more tractable.
One can (hopefully, but vide infra) assume that on the
intermediate scales one is looking at a steady planar
structure with constant mass and momentum fluxes,

ρU = A (9)
AU + PG + PC = B (10)

and a steady balance between acceleration upwards and
loss downstream,

∂Φ
∂p

= −4πp2f0(p)U2 (11)

but the acceleration flux Φ now depends on both the
upstream velocity profile and the upstream particle dis-
tribution. However if one simply makes some Ansatz
specifying the entire upstream distribution in terms of
the spectrum at the shock,

f0(p) → f(x, p) (12)

then the particle conservation equation and the mo-
mentum balance equation become two coupled integro-
differential equations for the two function U(x) and
f0(p).

Perhaps the most obvious Ansatz would be to as-
sume the form of distribution familiar from test-particle
theory,

f(x, p) = f0(p) exp
∫

U(x) dx

κ(x, p)
. (13)

However it is clear that in a modified shock where there
is distributed acceleration throughout the upstream re-
gion this Ansatz has the particles distributed too far
into the upstream region and that the real distribu-
tion should be more concentrated towards the shock.
We are looking at the spatial distribution of particles
at a fixed energy and the exponential profile is what
they would have if the upstream particles propagated
with no energy change. However in a modified shock
particles are both removed from this distribution by ac-
celeration to higher energies, an effect which will pref-
erentially truncate the far upstream tail of the distri-
bution, and injected from lower energies from a distri-
bution which is more concentrated (assuming that the
diffusion increases monotonically with energy). This
perhaps partially motivates Malkov’s Ansatz

f(x, p) = f0(p) exp
∫ (

−1
3

∂ ln f0

∂ ln p

)
U(x) dx

κ(x, p)
(14)

which he argues gives a better representation of the dis-
tributed acceleration characteristic of strongly modified
shock structures.

Remarkably the crudest possible Ansatz, which sim-
ply assumes that all the particles penetrate a fixed
distance upstream and then abruptly stop, appears to
work quite well and gives results very similar to those

obtained by Malkov and the various numerical studies.
This Ansatz, originally due to Eichler (1984), is

f(x, p) =
{

f0(p), x > −L(p)
0, x < −L(p)

(15)

and leads to a set of remarkably simple differential
equations which can be heuristically derived also as a
nonlinear box model. Essentially the same approxima-
tion has been made in slightly different formulations by
a number of authors, most recently P. Blasi (2002).

The key point about the approximation is that it es-
tablishes a one-to-one relation between momentum and
position (in this sense it is closely analogous to the ap-
proximation of ”sharpening the resonance” sometimes
used in plasma physics). Defining

Up = U(−L(p)) (16)

as the upstream velocity sensed by particles of momen-
tum p it is easy to show that

Φ = −
∫

4πp3

3
f(x, p)

du

dx
dx =

4πp3

3
f0(Up − U2) (17)

and thus

∂Φ
∂p

= −4πp2f0U2 = − 3U2

Up − U2

Φ
p

(18)

A
(
1−M−2

p

) ∂Up

∂p
=

4πp3

3
vf0 =

Φv

Up − U2
(19)

where Mp is the local Mach number of the upstream
flow (this assumes that the inflowing plasma is com-
pressed adiabatically and that there is no additional
heating from wave dissipation; such additional effects
are easily incorporated). It is most interesting (and
fortunate) that the length scale L(p) drops out of the
equations, a result similar to the fact that in the test-
particle theory the steady state solution is independent
of the diffusion coefficient.

The above system has an interesting extreme solu-
tion, probably of very limited physical validity, but im-
portant as an asymptote towards which more realistic
systems tend. If one considers formally the limit of
very strong shock modification with Up À U2 one can
neglect the downstream losses and the accelerated flux
becomes a constant. Neglecting gas pressure effects and
using kinetic energy T instead of momentum p as the
independent variable (and noting that v = dT/dp) the
momentum equation can be written

∂

∂T
(Up − U2)

2 =
2Φ
A

(20)

with solution

U2 ≈ 0, Up ≈
√

2ΦT

A
, f0 ∝ p−3T−1/2 (21)
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which is Malkov’s “universal” spectrum (Malkov, 1999).
It is clear that this is a formal solution for the case
where the accelerator is going flat out, all the energy
is going into pumping an essentially constant flux of
particles upwards in momentum space, and nothing is
escaping from the system. It is interesting that the
spectrum at the shock has the universal form p−3.5 for
relativistic particles, which, perhaps not entirely by co-
incidence, is what one formally gets by applying test-
particle theory to a shock of compression ratio 7 as
appropriate to a strong shock in a relativistic gas with
adiabatic exponent 4/3. The other very interesting fea-
ture is that the velocity profile is linear if the diffusion
has Bohm type scaling, κ(p) ∝ p,

Up ∝ √
p, L(p) ∝ κ(p)

Up
∝ √

p ∝ Up (22)

It is not hard to show that there exists an exact
solution with these characteristics. If the flow pro-
file is linear, the convergence is the same everywhere
and thus the acceleration decouples from the spatial
propagation. Similarly, because all points see the same
locally convergent flow, the spatial diffusion will lead
to a Gaussian distribution of the accelerated particles.
Looking for a solution of this form one readily finds
that

ρ(x) =
Aτ

|x| (23)

U(x) = −x

τ
(24)

PG(x) = 0 (25)
PC(x) = PC(0)− 2ατQ |x| (26)

f(x, p) =
3τQ

4π

1√
π

p−3L−1 exp
(−x2

L2

)
(27)

κ(p) =
α

2τ

(
T +

1
6
pv

)
(28)

is an exact (though clearly singular) solution of the hy-
drodynamic equations (ρ is the plasma density, PG the
“thermal” pressure) including particle pressure which
also satisfies the particle transport equation if

A = 2ατ2Q, L2 = αT. (29)

Note that the total particle flux towards the origin is
2A/m where m is the particle mass, and that thus the
injection efficiency is

η =
mQ

2A
=

m

4ατ2
. (30)

It is clearly necessary that 4ατ2 À m.
In reality this extreme solution, as indicated above,

appears never to be reached. However one can think
of nonlinear shocks as systems which are balanced be-
tween this extreme high efficiency solution on the one

hand and the test-particle solutions on the other. From
the different approaches we are now beginning to get
quite a good understanding of these solutions and per-
haps the most remarkable feature is that the deviations
from the test-particle spectra remain relatively small.
It is important to note that when nonlinear spectra are
plotted they are for obvious reasons usually plotted to
emphasise the deviations from the linear spectra.

III. A SERIOUS PROBLEM WITH INTER-
ESTING CONSEQUENCES

There is one big problem with the above discussion
and almost all the numerical work done to date. It all
depends crucially on the shock structure being steady
on the intermediate scales and it is not at all obvious
that this is the case. In fact it is well known within the
two-fluid model that intermediate scale disturbances
(typically acoustic modes) will be unstable and grow
in the shock precursor unless the diffusion has a very
specific dependency on density, κ ∝ ρ. There is also
strong observational evidence that the magnetic field
in and immediately behind strong supernova remnant
shocks is very substantially enhanced, presumably as a
result of mesoscale instabilities in the shock precursor.
In this connection the recent work by Bell (2004) is
especially interesting, and there has also been work in
this direction by Diamond (personal communication)
and by Zweibel (2003). It is of course possible that
even if the mesoscales are unstable, the overall struc-
ture could still be well described by a steady averaged
flow. And from the point of view of acceleration an en-
hanced effective field is very welcome as it potentially
solves the long standing issue of how to accelerate cos-
mic ray particles to the energies typical of the “knee” in
the energy spectrum. Supernova shocks operating only
with typical interstellar fields, as is well known, fall
short by about an order of magnitude of the 1015 eV
or so needed. In my view the most interesting devel-
opment in shock acceleration theory over the next few
years will be this question, of whether the magnetic
field is amplified in the shock precursor and how this
then affects the acceleration.
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