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ABSTRACT

Magnetic fields are an important ingredient of galaxy clusters and are indirectly observed on cluster
scales as radio haloes and radio relics. One promising method to shed light on the properties of cluster
wide magnetic fields is the analysis of Faraday rotation maps of extended extragalactic radio sources.
We developed a Fourier analysis for such Faraday rotation maps in order to determine the magnetic
power spectra of cluster fields. In an advanced step, here we apply a Bayesian maximum likelihood
method to the RM map of the north lobe of Hydra A on the basis of our Fourier analysis and derive
the power spectrum of the cluster magnetic field. For Hydra A, we measure a spectral index of −5/3
over at least one order of magnitude implying Kolmogorov type turbulence. We find a dominant scale
of about 3 kpc on which the magnetic power is concentrated, since the magnetic autocorrelation length
is λB = 3± 0.5 kpc. Furthermore, we investigate the influences of the assumption about the sampling
volume (described by a window function) on the magnetic power spectrum. The central magnetic field
strength was determined to be ∼ 7 ± 2 µG for the most likely geometries.
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I. INTRODUCTION

One method to investigate cluster magnetic field
structure and strength is the detection of the Faraday
rotation effect (for recent reviews see Carilli & Taylor
2002; Widrow 2002; Govoni & Feretti 2004). This ef-
fect is observed whenever linearly polarised radio emis-
sion passes through a magnetised medium. A linearly
polarised wave can be described by two circularly po-
larised waves. Their motion along magnetic field lines
in a plasma introduces a phase difference between the
two waves resulting in a rotation of the plane of polari-
sation. If the Faraday active medium is external to the
source of the polarised emission, one expects the change
in polarisation angle to be proportional to the squared
wavelength. The proportionality factor is called rota-
tion measure (RM). This quantity can be evaluated in
terms of the line of sight integral over the product of
the electron density and the magnetic field component
along the line of sight.

Enßlin & Vogt (2003) proposed a method to deter-
mine the magnetic power spectra by Fourier transform-
ing RM maps. Based on these considerations, Vogt
& Enßlin (2003) applied this method and determined
the magnetic power spectrum of three clusters (Abell
400, Abell 2634 and Hydra A) from RM maps of radio
sources located in these clusters. They determined field
strengths of ∼ 12 µG for the cooling flow cluster Hy-
dra A, 3 µG and 6 µG for the non-cooling flow clusters
Abell 2634 and Abell 400, respectively. Their analy-
sis revealed spectral slopes of the power spectra with
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spectral indeces −2.0 . . .−1.6. However, it was realised
that using the proposed analysis, it is difficult to reli-
ably determine differential quantities such as spectral
indeces due to the complicated shapes of the used emis-
sion regions which lead to a redistribution of magnetic
power within the spectra.

In order to determine a power spectrum from ob-
servational data, maximum likelihood estimators are
widely used in astronomy. These methods and algo-
rithms have been greatly improved especially by the
Cosmic Microwave Background (CMB) analysis which
is facing the problem of determining the power spec-
trum from large CMB maps. Kolatt (1998) proposed to
use such an estimator to determine the power spectrum
of a primordial magnetic field from the distribution of
RM measurements of distant radio galaxies.

Based on the initial idea of Kolatt (1998), the
methods developed by the CMB community (especially
Bond et al. 1998) and our understanding of the mag-
netic power spectrum of cluster gas (Enßlin & Vogt
2003), we present here an Bayesian maximum likeli-
hood approach to calculate the magnetic power spec-
trum of cluster gas given observed Faraday rotation
maps of extended extragalactic radio sources (Sect. II).
The power spectrum enables us to determine also char-
acteristic field length scales and strength. After test-
ing our method on artifical generated RM maps with
known power spectra (Sect. III), we apply our analysis
to a Faraday rotation map of Hydra A (Sect. IV). The
data were kindly provided by Greg Taylor. In addi-
tion, this method allows to determine the uncertainties
of our measurement and, thus, we are able to give errors
on the calculated quantities. Based on these calcula-
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tions, we derive statements for the nature of turbulence
for the magnetised gas in the cooling core galaxy cluster
Hydra A (Sect. V).

Throughout the rest of the paper we assume a Hub-
ble constant of H0 = 70 km s−1 Mpc−1, Ωm = 0.3 and
ΩΛ = 0.7 in a flat universe. All equations follow the
notation of Enßlin & Vogt (2003).

II. MAXIMUM LIKELIHOOD ANALYSIS

One of the most common used methods of Bayesian
statistic is the maximum likelihood method. The like-
lihood function for a model characterised by p parame-
ters ap is equivalent to the probability of the data ∆
given a particular set of ap and can be expressed in the
case of (near) Gaussian statistic of ∆ as

L∆(a√) =
∞

(∈π)\/∈|C|∞/∈ ·exp
(
−∞∈ ∆T C−∞∆

)
, (1)

where |C| indicates the determinant of a matrix, ∆i =
RMi are the actual observed data, n indicates the num-
ber of observationally independent points and C =
C(ap) is the covariance matrix. This covariance ma-
trix can be defined as

Cij(ap) = 〈∆obs
i ∆obs

j 〉 = 〈RMobs
i RMobs

j 〉, (2)

where the brackets 〈〉 denote the expectation value and,
thus, Cij(ap) describes our expectation based on the
proposed model characterised by a particular set of
ap’s. Now, the likelihood function L∆(a√) has to be

maximised for the parameters ap. Note, that although
the magnetic fields might be non-Gaussian, the RM
should be close to Gaussian due to the central limit the-
orem. Observationally, RM distributions are known to
be close to Gaussian (e.g., Taylor & Perley 1993; Fer-
etti et al. 1999a,b; Taylor et al. 2001).

Since we are interested in the magnetic power spec-
trum, we have to find an expression for the covariance
matrix Cij(ap) = CRM (x⊥i, x⊥j), where x⊥i is the dis-
placement of point i from the z-axis, which can be iden-
tified as the RM autocorrelation 〈RM(x⊥i) RM(x⊥j)〉.
This has then to be related to the magnetic power spec-
tra. For a line of sight parallel to the z-axis and dis-
placed by x⊥ from it, the RM arising from polarised
emission passing from the source zs(x⊥) through a mag-
netised medium to the observer located at infinity is
expressed by

RM(x⊥) = a0

∫ ∞

zs(x⊥)

dx ne(x)Bz(x), (3)

where a0 = e3/(2πm2
ec

4), x = (x⊥, z), ne(x) is the elec-
tron density and Bz(x) is the magnetic field component
along the line of sight.

In the following, we will assume that the magnetic
fields in galaxy clusters are isotropically distributed
throughout the Faraday screen. If one samples such

a field distribution over a large enough volume they
can be treated as statistically homogeneous and statis-
tically isotropic. Therefore, any statistical average over
a field quantity will not be influenced by the geometry
or the exact location of the volume sampled. Following
Enßlin & Vogt (2003), we can define the elements of
the RM covariance matrix using the RM autocorre-
lation function CRM (x⊥i, x⊥j) = 〈RM(x⊥i)RM(x⊥j)〉
and introduce a window function f(x) which describes
the properties of the sampling volume

CRM (x⊥, x ′⊥) = ã0
2

∫ ∞

zs

dz

∫ ∞

z′s

dz′f(x)f(x ′)×

〈Bz(x⊥, z)Bz(x′⊥, z′)〉 , (4)

where ã0 = a0ne0, the central electron density is ne0

and the window function is defined by

f(x) = 1{x⊥∈Ω} 1{z≥zs(x⊥)} g(x)ne(x)/ne0, (5)

where 1{condition} is equal to unity if the condition
is true and zero if not and Ω defines the region for
which RM ’s were actually measured. The electron
density distribution ne(x) is chosen with respect to a
reference point xref (usually the cluster centre) such
that ne0 = ne(xref ), e.g., the central density, and
B0 = 〈B2(xref )〉1/2. The dimensionless average mag-
netic field profile g(x) = 〈B2(x)〉1/2/B0 is assumed
to scale with the density profile such that g(x) =
(ne(x)/ne0)αB .

With the understanding of the magnetic power spec-
trum of cluster gas εB(k) as described by Enßlin & Vogt
(2003), one can then derive the expression for the co-
variance matrix CRM (x⊥, x′⊥ = x⊥ + r⊥).

CRM (x⊥, x⊥ + r⊥) = 4π2ã0
2

∫ ∞

zs

dz f(x)f(x + r)×
∫ ∞

−∞
dk εB(k)

J0(kr⊥)
k

, (6)

where J0(kr⊥) is the 0th Bessel function.
Since the magnetic power spectrum is the interesting

function, we parametrise εB(k) =
∑

p εBp1{k∈ [kp,kp+1]},
where εBp is constant in the interval [kp, kp+1], leading
to

CRM (εBp) = 4π2ã0
2

∫ ∞

zs

dz f(x)f(x + r)×
∑

p

εBp

∫ kp+1

kp

dk
J0(kr⊥)

k
, (7)

where the εBp are to be understood as the model para-
meter ap for which the likelihood function L∆(a√) has

to be maximised given the Faraday data ∆.
In order to maximise the likelihood function, we em-

ployed the algorithm developed by Bond et al. (1998).
For more detailed description of its implementation, we
refer to Vogt & Enßlin (submitted).
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III. TESTING THE ALGORITHM

In order to test our algorithm, we applied our maxi-
mum likelihood estimator to generated RM maps with
a known magnetic power spectrum εB(k). Enßlin &
Vogt (2003) give a prescription (their Eq. (37)) for the
relation between the amplitude of RM , | ˆRM(k⊥)|2,
and the magnetic power spectrum in Fourier space. Us-
ing this relation, we assumed for the magnetic field
power spectra a Kolmogorov type power spectrum
εobs

B (k) ∝ k−5/3 (for k ≥ kc, where kc is the energy
injection scale).

As Faraday screen, we assumed a box with sides be-
ing 150 kpc long and a depth of L = 300 kpc. For
the sake of simplicity, we assumed a uniform electron
density profile with a density of ne0 = 0.001 cm−3. We
applied the Fourier analysis as described in Enßlin &
Vogt (2003) to a part of this map in order to mimick
a limited source size. The resulting power spectrum is
shown in Fig. 1 as dashed line in comparison with the
input power spectrum as dotted line.
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Fig. 1.— Power spectra for a simulated RM map with
a known power spectrum. The input power spectrum is
shown in comparison to the one found by the Fourier analy-
sis as described in Vogt & Enßlin (2003) and the one which
was derived by our maximum likelihood estimator. One can
see the good agreement within one σ between input power
spectrum and the power spectrum derived by the maximum
likelihood method.

The maximum likelihood method is numerically lim-
ited by computational power since it involves matrix
multiplication and inversion, where the latter is a N3

process. Therefore, we chose to randomly average
neighbouring points with a scheme which let to a map
with spatially inhomogeneously resolved cells. The re-
sulting map is highly resolved on top and lowest on the
bottom with some random deviations which makes it
similarly to the error weighting of the observed data.
We used N = 1500 independent points for the analysis.

The resulting power spectrum is shown as filled cir-
cles with 1-σ error bars in Fig. 1. As can be seen

from this figure, the input power spectrum and the
power spectrum derived by the maximum likelihood es-
timator agree well within the one σ level. Integration
over this power spectrum results in a field strength of
(4.7± 0.3)µG in agreement with the input magnetic
field strength of 5µG.

IV. APPLICATION TO HYDRA A

We applied this maximum likelihood estimator in-
troduced and tested in the last sections to the Faraday
rotation map of the north lobe of the radio source Hy-
dra A (Taylor & Perley 1993). The data were kindly
provided by Greg Taylor. For a description of the win-
dow funtion f(x), we refer to Vogt & Enßlin (2003).
However, the scaling parameter αB between electron
density profile and global magnetic field distribution
has to be considered as a free parameter.

For this purpose, we used a high fidelity RM map
presented in Vogt et al. (2004) which was generated
by the newly developed algorithm Pacman (Dolag et
al. 2004) using the original polarisation data. The Pac-
man map which was used is shown in the right panel
of Fig. 2.

For the same reasons as mentioned in Sect. III, we
averaged the data. The analysed RM map was deter-
mined by a gridding procedure. The original RM map
was divided into four equally sized cells. In each of
these the original data were averaged employing an er-
ror weighting scheme. Then the cell with the smallest
error was chosen and again divided into four equally
sized cells and the original data contained in the so
determined cell were averaged. The last step was re-
peated until the number of cells reached a defined value
N = 1500. This is partly due to the limitation by com-
putational power but also partly because of the desired
suppression of small scale noise by a strong averaging
of the noisy regions.

The final RM map which was analysed is shown in
Fig. 2. The most noisy regions in Hydra A are located
in the coarsely resolved northernmost part of the lobe.
We chose not to resolve this region any further but to
keep the large-scale information which is carried by this
region.

V. RESULTS AND DISCUSSION

Based on the described treatment of the data and a
properly defined window function, we calculated power
spectra for various scaling exponents αB . The resulting
power spectra are plotted in Fig. 3.

In Fig. 3, one can see that the power spectrum de-
rived for αB = 1.0 has a completely different shape
whereas the other power spectra show only slight de-
viation from each other and are vertically displaced
implying different normalisation factors, i.e., central
magnetic field strengths which increase with increas-
ing αB . The straight dashed line which is also plotted
in Fig. 3 indicates a Kolmogorov like power spectrum
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Fig. 2.— The final RM map from the north lobe of Hydra A which was analysed with the maximum likelihood estimator;
left: error weighted map. The dots indicate the coordinates which correspond to the appropriate error weighted RM value,
which resulted from averaging over the indicated area. Right: original Pacman map. Note that the small scale noise for the
diffuse part of the lobe is averaged out and only the large scale information carried by this region is maintained.

being equal to 5/3 in our prescription. One can see,
that the power spectra follow this slope over at least
on order of magnitude.

The likelihood function offers the possibility to cal-
culate the actual probability of a set of parameters
given the data (see Eq. (1)). Thus, we calculated the
log likelihood lnL∆(εBp) value for various power spec-
tra derived for the different window functions varying
in the scaling exponent αB . In Fig. 4, the log likelihood
is shown in dependence of the used scaling parameter
αB .

As can be seen from Fig. 4, there is a plateau of most
likely scaling exponents αB ranging from 0.1 to 0.8. An
αB = 1 seems to be very unlikely for our model. The
sudden decrease for αB < 0.1 might be due to non-
Gaussian effects. The magnetic field strength derived
for this plateau region ranges from 9 µG to 5 µG. The
correlation length of the magnetic field λB was deter-
mined to range between 2.5 kpc and 3.0 kpc whereas
the RM correlation length was determined to be in
the range of 4.5 . . . 5.0 kpc. These ranges have to be
considered as a systematic uncertainty since we are not
yet able to distinguish between these scenarios observa-
tionally. Another systematic effect might be given by
uncertainties in the electron density as incorporated

in the window function (see Eq. (5)) itself. Varying
the electron density normalisation parameters leads to
a vertical displacement of the power spectrum while
keeping the same shape.

VI. CONCLUSIONS

We presented a maximum likelihood estimator for
the determination of cluster magnetic field power spec-
tra from RM maps of extended polarised radio sources.
We introduced the covariance matrix for RM under the
assumption of statistically homogeneously distributed
magnetic fields throughout the Faraday screen. We suc-
cessfully tested our approach on simulated RM maps
with known power spectra.

We applied our approach to the RM map of the
north lobe of Hydra A. We calculated different power
spectra for various window functions being especially
influenced by the scaling parameter between electron
density profile and global magnetic field distribution.
The scaling parameter αB was determined to be most
likely in the range of 0.1 . . . 0.8.

We realised that there is a systematic uncertainty in
the values calculated due to the uncertainty in the win-
dow parameters. Taking this into account, we deduced
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Fig. 3.— Power spectra for various scaling exponents αB

in the relation B(r) ∼ ne(r)
αB of the window function were

used.

for the central magnetic field strength in the Hydra A
cluster B = (7±2)µG and for the magnetic field corre-
lation length λB = (3.0±0.5) kpc. If the geometry un-
certainties could be removed the remaining statistical
errors are an order of one magnitude smaller. The dif-
ference of these values from the ones found in an earlier
analysis of the same dataset of Hydra A which yielded
B = 12µG and λB = 1 kpc Vogt & Enßlin (2003) is a
result of the improved RM map using the Pacman al-
gorithm (Dolag et al. 2004; Vogt et al. 2004) and a bet-
ter knowledge of the magnetic cluster profile, i.e., here
αB ≈ 0.5 (instead of αB = 1.0 as in Vogt & Enßlin
2003).

The cluster magnetic field power spectrum of Hy-
dra A follows a Kolmogorov like power spectrum over
at least one order of magnitude. However, from our
analysis it seems that there is a dominant scale ∼ 3
kpc on which the magnetic power is concentrated.

ACKNOWLEDGEMENTS

We like to thank Greg Taylor for providing the po-
larisation data of the radio source Hydra A and Klaus
Dolag for the calculation of the RM map using Pac-
man. We like to thank the organisers for their hospi-
tality and the excellent and enjoyable conference.

REFERENCES

Bond, J. R., Jaffe, A. H., & Knox, L. 1998, Phys. Rev. D,
57, 2117

Carilli, C. L., & Taylor, G. B. 2002, ARA&A, 40, 319

Dolag, K., Vogt, C., & Enßlin, T. A. 2004, ArXiv:astro-
ph/0401214

Enßlin, T. A., & Vogt, C. 2003, A&A, 401, 835

Feretti, L., Dallacasa, D., Govoni, F., et al. 1999a, A&A,
344, 472

 3700

 3750

 3800

 3850

 3900

 3950

 4000

 4050

 4100

-0.2  0  0.2  0.4  0.6  0.8  1  1.2

ln
 L

∆ 
(a

)

αB

Fig. 4.— The log likelihood lnL∆(a) of various power
spectra assuming different αB . One can see that αB =
0.1 . . . 0.8 are in the plateau of maximum likelihood. The
sudden decrease for αB < 0.1 in the likelihood might be due
to non-Gaussian effects becoming too strong.

Feretti, L., Perley, R., Giovannini, G., & Andernach, H.
1999b, A&A, 341, 29

Govoni, F. & Feretti, L. 2004, ArXiv:astro-ph/0410182

Kolatt, T. 1998, ApJ, 495, 564

Taylor, G. B., & Perley, R. A. 1993, ApJ, 416, 554

Taylor, G. B., Govoni, F., Allen, S. W., & Fabian, A. C.
2001, MNRAS, 326, 2

Vogt, C., Dolag, K., & Enßlin, T. A. 2004, ArXiv:astro-
ph/0401216

Vogt, C., & Enßlin, T. A. 2003, A&A, 412, 373

Widrow, L. M. 2002, Review of Modern Physics, 74, 775


