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ABSTRACT

The origin of magnetic fields in the universe remains an outstanding problem in cosmology. We
propose that these fields are produced by shocks during the large-scale structure formation. We discuss
the mechanism of the field generation via the counter-streaming (Weibel) instability. We also show
that these Weibel-generated fields are long-lived and weakly coupled to dissipation. Subsequent field
amplification by the intra-cluster turbulence may also take place, thus maintaining the magnetic energy
density close to equipartition.

Key words : cosmology: large scale structure – magnetic fields – shock waves

I. INTRODUCTION

The existence of (sub-)micro-gauss magnetic fields in
galaxy clusters is now a well-established fact. Multiple
observations indicate their presence by Faraday rota-
tion and other observables. However, the question of
the origin of these fields remains open. Traditionally,
one considers the amplification of seed fields by hy-
drodynamic turbulence excited during violent processes
of large-scale structure formation. The seed fields, in
turn, may be of primordial origin or be produced lo-
cally. In the former case, they could have been pro-
duced during anQCD or electroweak first order phase
transition (Quashnock, Loeb, & Spergel, 1989; Vachas-
pati, 1991; Sigl, Olinto, & Jedamnik, 1997), or during
(dilaton-driven) inflation (Ratra, 1992; Gasperini, Gio-
vannini, & Veneziano, 1995). The non-primordial mod-
els include the Harrison mechanism (Harrison, 1970;
Sicotte, 1997), Biermann battery (Biermann, 1950;
Gnedin, Ferrara, & Zweibel, 2000), the field genera-
tion from primordial helicity (Field & Carroll, 2000;
Sigl, 2001), the field generation in collisionless shocks
(Medvedev & Loeb, 1999; Schlickeizer & Shukla, 2003),
and, perhaps, some other.

Here we discuss the scenario of generation of cos-
mological field by collisionless shocks during the large-
scale structure formation. The general prediction that
shocks can generate magnetic fields was made by Moi-
seev & Sagdeev (1963) and Medvedev & Loeb (1999).
Schlickeizer & Shukla (2003) investigated the plasma
physical aspects of the problem pertinent to the cos-
mological environment. Numerical 3D PIC simulations
(Silva, et al. 2003; Nishikawa, et al. 2003; Frederiksen,
et al. 2004) fully confirmed these theoretical predic-
tions.
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II. THE MECHANISM

In general, shocks with the Mach number greater
than three, must be highly turbulent. The source and
the mechanism of the turbulence is thought to be of
kinetic nature, in order to prevent multi-stream mo-
tion of plasma particles. It has been shown that the
Weibel instability operates at the shock front (Moiseev
& Sagdeev, 1963; Medvedev & Loeb, 1999). This insta-
bility is driven by the anisotropy of the particle distri-
bution function (PDF) associated with a large number
of particles reflected from the shock potential.

(a) Linear Regime of Field Growth and Its
Saturation

i) theoretical analysis

The instability under consideration was first pre-
dicted by Weibel (1959) for a non-relativistic plasma
with an anisotropic distribution function. The simple
physical interpretation provided later by Fried (1959)
treated the PDF anisotropy more generally as a two-
stream configuration of cold plasma. Below we give a
brief, qualitative description of this two-stream mag-
netic instability.

Let us consider, for simplicity, the dynamics of one
species only (e.g., protons), whereas the other is as-
sumed to provide global charge neutrality.∗ The elec-
trons are assumed to move along the z-axis with the
velocities v = +ẑvz and v = −ẑvz, thus forming equal
particle fluxes in opposite directions (so that the net
current is zero). Such a particle distribution occurs
naturally near the front of a shock (moving along z-

∗In reality, the role of protons is more complicated. In particular,
they can play a crucial role in the electron acceleration in the
downstream region. We do not consider such effects in this paper;
they will be studied elsewhere.
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direction), where the “incoming” (in the shock frame)
ambient gas particles meet the “outgoing” particles re-
flected from the shock potential (loosely speaking, the
low energy cosmic rays). Thus, the particle velocities vz

are of order the shock velocity, vz ∼ vsh. The counter-
streaming particles may also have some thermal spread.
Since for high-Mach number shocks, vth ¿ vsh in the
upstream region, we may neglect the parallel velocity
spread in our consideration. The thermal spread in the
transverse direction cannot be neglected, however. We
parameterize the PDF anisotropy as follows:

A =
ε‖ − ε⊥

εtot
' M2 − 1

M2 + 1
, (1)

where ε‖ ∝ v2
z ' v2

sh is the energy of particle along z-
direction, ε⊥ ∝ (v2

x + v2
y) ∝ v2

thermal ' c2
s is the thermal

energy in the transverse direction, εtot = ε‖ + ε⊥ is the
total energy, cs is the sound speed upstream and the
Mach number of the shock is M = vsh/cs. Clearly, for
strong shocks M À 1, the anisotropy parameter is close
to unity, A ∼ 1. Next, according to the linear stability
analysis technique, we add an infinitesimal magnetic
field fluctuation, B = x̂Bx cos(ky). The Lorentz force,
e(v ×B)/c, acts on the charged particles and deflects
their trajectories, as is shown in Figure 1a. As a result,
the protons moving upward and those moving down-
ward will concentrate in spatially separated current fil-
aments. The magnetic field of these filaments appears
to increase the initial magnetic field fluctuation. The
growth rate and the wavenumber of the fastest growing
mode (which, in fact, sets the spatial correlation scale
of the produced field) are

γB = Aωp,s(vz/c), kB = Aωp,s/c, (2)

where

ωp,s =
(

4πe2ns

ms

)1/2

≈ 1.32× 103

(
ns

np

mp

ms

)1/2

s−1

(3)
is the plasma frequency defined for species s (electrons,
protons, etc.), np and mp are the number density and
the mass of the protons, respectively. (We use cgs units
throughout the paper, unless stated otherwise.) Thus,
the instability is indeed driven by the PDF anisotropy
and should quench for the isotropic case. To put these
facts in the context of cosmological shocks, we give esti-
mates of the characteristic temporal and spatial scales.
The order of magnitude estimates of the magnetic field
e-folding time and the field correlation length at strong
shocks (M À 1) are readily obtained as

τB ∼ 1/γB ' 2× 102 v−1
7 n

−1/2
−4 s, (4)

λB ∼ 2π/kB ' 1010 n
−1/2
−4 cm (5)

for a typical IGM proton density of n ∼ 10−4 cm−3 and
a typical shock velocity v ∼ 107 cm s−1; as usual, we de-
note n−4 = n/(10−4 cm−3) and v7 = v/(107 cm s−1).

(a)

(b)

(c)

Fig. 1.— Illustration of various stages of the Weibel in-
stability. Color coding of particles: blue — the incoming
particles from the IGM, red — the particles scattered from
the shock. (a) Linear regime: current filamentation; (b)
saturation; (c) nonlinear regime: filament coalescence.

The Lorentz force deflection of particle orbits in-
creases as the magnetic field perturbation grows in am-
plitude. The amplified magnetic field is random in
the plane perpendicular to the particle motion, since
it is generated from a random seed field. Thus, the
Lorentz deflections result in a pitch angle scattering,
which makes the bulk of the PDF isotropic. If one
starts from a strong anisotropy, so that the thermal
spread is much smaller than the particle bulk velocity,
most of the particles will eventually isotropize and the
thermal energy associated with their random motions
will be equal to their initial directed kinetic energy.
This final state will bring the instability to saturation.

The saturation level of the magnetic field may read-
ily be estimated as follows. First of all, note that the
instability is due to the free streaming of particles. As
the magnitude of the magnetic field grows, the trans-
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verse deflection of particles gets stronger, and their free
streaming across the field lines is suppressed, see Fig-
ure 1b. The typical curvature scale for the deflections
is the Larmor radius,

ρL = v⊥B/ωc,s, (6)

where v⊥B is the particle velocity transverse to the di-
rection of the local magnetic field and

ωc,s =
eB

msc
≈ 9.58× 103 B (mp/ms) s−1 (7)

is the cyclotron (Larmor) frequency of species s. On
scales larger than ρL, particles can only move along
field lines. Hence, when the growing magnetic fields
become such that kBρL ∼ 1, the particles are mag-
netically trapped and can no longer amplify the field.
Assuming an isotropic particle distribution at satura-
tion (v⊥B ∼ vsh), this condition can be re-written as

εB =
B2/8π

msnsv2
sh/2

' A2. (8)

For strong shocks (M À 1, A ∼ 1), this corresponds to
the magnetic energy density close to equipartition with
the thermal energy of particles downstream the shock.

ii) 3D PIC simulations of the instability

The dynamics of the Weibel instability has recently
been simulated by our group (Silva, et al. 2003) as well
as by several other research groups using 3D plasma
kinetic codes (Nishikawa et al., 2003; Frederiksen et
al., 2004). We examined the instability, which occurs
in a collision of two inter-penetrating unmagnetized
electron-positron clouds with zero net charge. This is
the simplest model for the formation region of a shock
front, as well as a classic scenario unstable to electro-
magnetic and/or electrostatic plasma instabilities.

The relativistic electromagnetic 3D PIC code OSIRIS
(Fonseca, et al., 2002) was used. The simulations were
performed in a simulation cube of size 256× 256× 100
grid points, ten grid points correspond to one plasma
skin depth c/ωp,e. We had more than 108 particles
in the simulation box. Periodic boundary conditions
were imposed. The initial state is spatially homoge-
neous with two identical groups of particles moving
with some velocity ±vz. The particles in both groups
have a small thermal velocity vth ' vz/6. The system
has no net charge and no net current, and initially the
electric and magnetic fields are set to zero.

The results of the simulations are shown in Figure
2 and 3. Figure 2 shows the temporal evolution of the
magnetic equipartition parameter εB . In Figure 3 the
three-dimensional structure of the magnetic fields and
currents are shown at two different times: (a) during
linear regime, at t ' 13ω−1

p,e, and (b) just after the
saturation, at t ' 20ω−1

p,e. The left panels show the
structure of magnetic field lines and the right panels

Fig. 2.— The temporal evolution of the magnetic field
energy density normalized by the initial kinetic energy of
the particles.

show the number density of particles (blue are moving
downward, red are moving upward). We see that dur-
ing the linear stage of the instability (ωp,et ∼< 15) there
is exponential generation of a magnetic field, which
predominantly lies in the plane of the shock (x − y-
plane), i.e., perpendicular to the direction of motion
of the plasma clouds. The produced magnetic field is
highly inhomogeneous, with the characteristic correla-
tion scale comparable to the plasma skin depth length
c/ωp,e. It is also seen that the magnetic field gener-
ation is associated with the separation of the particle
streams in spatially distinct regions and the formation
of straight current filaments.

Saturation of the instability occurs at time t ∼
15ω−1

p,e, which is indicated by the peak of εB in Figure 2.
At this moment, most of the particles are randomized
over the pitch angle by the Lorentz deflections. Thus
the PDF anisotropy, which is the free energy source for
the instability is removed. At the time of saturation,
the magnetic field energy density reaches its maximum
∼ 20%.

At longer times, one sees the substantial decrease
in εB , during the initial stage of the nonlinear regime
in which current filaments begin to interact with each
other, forcing like currents to approach each other and
merge. During this phase, initially randomly oriented
filaments cross each other to form a more organized,
large-scale quasi-regular pattern, hence much current
and B-field is annihilated. At later times, t ∼> 35ω−1

p,e,
the filament coalescence continues, as is indicated by
the increase of the filament sizes. Note that the spatial
distribution of currents is now quite regular, so that
filaments with opposite polarity no longer cross each
other, but simply interchange, staying always far away.
The total magnetic field energy is εB ∼ 0.25% and
does not change any more. Note also that the residual
magnetic field is highly inhomogeneous, seen as a col-
lection of magnetic field filaments or ”bubbles”. The
amplitude of the field in the bubbles is close to equipar-
tition. Therefore, the overall decrease of the magnetic
field energy is mostly associated with the decreasing
filling factor of the field.

We discuss the nonlinear field evolution in the next



536 MEDVEDEV ET AL.

Fig. 3.— The 3D structure of the magnetic fields and currents from the simulations at two different times: (a) during
linear regime, at t ' 13ω−1

p,e, and (b) just after the saturation, at t ' 20ω−1
p,e. The left panels show the structure of magnetic

field lines and the right panels show the number density of particles (blue are moving downward, red are moving upward).

section in great details.

(b) Nonlinear Regime: Long-Time Field Evo-
lution

Whereas there is no doubt that magnetic field is gen-
erated at shocks, there was a great concern about the
life-time of these fields, i.e., whether they can populate
a substantial volume downstream. The concern arises
from the fact that the fields produced are tangled on a
very small scale,

λB ∼ 2πc/ωp,p ' 1010 cm (9)

for a typical IGM particle density of n ∼ 10−4 cm−3.
Therefore, it is possible that the extremely short spatial
scales, i.e., sharp field gradients, must be rapidly de-
stroyed by dissipation, on a plasma time-scale of τB ∼
102 s. Should this happen, the fields would occupy
only a very narrow region near the shock front and,
thus, cannot be the source of large-scale cosmological
fields. Therefore, understanding of the long-term evo-
lution of the Weibel magnetic fields is of great impor-
tance. Recently, we performed such an analysis using
both theoretical and numerical methods (Medvedev, et
al. 2005) and demonstrated that the field should not
decay to zero as t →∞. We briefly outline the analysis
and the results here.

i) theoretical analysis

Our 3D PIC numerical simulations described above
demonstrate that the generated magnetic fields are as-
sociated with a quasi-two-dimensional distribution of
current filaments (Silva, et al. 2003). Hence we sug-
gest the following toy model, see Figure 1c.

We consider straight one-dimensional current fila-
ments oriented in the vertical, z-direction. Initially, all
filaments are identical: the initial diameter of them
is D0, their initial mass per unit length is µ0 '
mn(πD2

0/4), where m is the mass of plasma particles
(e.g., electrons) and n is their number density. Each fil-
ament carries current I0 in either positive or negative
ẑ-direction. The net current in the system is set to zero,
i.e., there are equal numbers of positive and negative
current filaments. We also assume that the initial sep-
aration (the distance between the centers) of the fila-
ments d0 is comparable to their size, d0 ' 2D0. Finally,
no external homogeneous magnetic field is present in
the system.

Initially, the filaments are at rest and their positions
in space are random. This configuration is unstable be-
cause opposite currents repel each other, whereas like
currents are attracted to each other and tend to coa-
lesce and form larger current filaments. The character-
istic scale of the magnetic field will accordingly increase
with time. We study this process quantitatively using
the toy model of two interacting filaments.

The magnetic field produced by a straight filament
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is B0(r) = 2I0/(cr), where r is the cylindrical radius.
The force per unit length acting on the second filament
is dF/dl = −B0I0/c. Since dF/dl = µẍ, where x is the
position in the center of mass frame and “overdot” de-
notes time derivative, we write the equation of motion
as follows:

ẍ = − 2I2
0

c2µ0

1
x

, (10)

where we used that r = 2x and the reduced mass
µr = µ0/2. We define the coalescence time as the
time required for the filaments, which are initially at
rest, to cross the distance between them and “touch”
each other, which happens when the distance between
their centers becomes equal to D0, i.e., when x = D0/2.
The coalescence time, as it is defined above, is indepen-
dent of the details of the merging process itself, which
involves rather complicated dynamics associated with
the redistribution of currents. Quite obviously, the in-
teraction between the filaments is the weakest at large
distances x ∼ x0 ∼ d0/2. Hence, the coalescence rate
is limited by the filament motions at the largest scales.
The coalescence time can be readily estimated from Eq.
(10), assuming that x ∼ x0 ∼ d0/2 and ẍ ∼ (d0/2)τ−2

0 ,
as follows:

τ0,NR ∼
(
D2

0c
2µ0/(2I2

0 )
)1/2

. (11)

The above estimate is valid as long as the motion is
non-relativistic. The maximum velocity of a filament
is at the time of coalescence, x = D0/2:

vm0 ∼ D0/2τ0 ∼ I0/(c
√

2µ0). (12)

It must always be much smaller than the speed of light.
If the motion of a filament during the merger be-

comes relativistic, i.e., vm0 becomes comparable to c
the separation cannot decrease faster than as t(x) '
x/c. Therefore, the coalescence time will be

τ0,R ' (d0/2)/c = D0/c. (13)

The filament coalescence is a hierarchical process.
Indeed, suppose that initially the system contains N0

current filaments, with an average separation d0 ∼
2D0. Each of the filaments carries current I0, its di-
ameter is D0 and its mass per unit length is µ0. For
simplicity, we assume that filaments coalesce pairwise.

Having the original “zeroth generation” of filaments
merged (the process takes about τ0,NR or τ0,R to com-
plete), the system will now contain N0/2 of “first gener-
ation” filaments. Each of these filaments carries current
I1 = 2I0, has mass per unit length µ1 = 2µ0, and the
separation between them is d1 =

√
2d0 (because the

two dimensional number density of filaments decreased
by 2). Since µ ∝ D2, the filament size also increases
as D1 =

√
2D0. Remarkably, this new configuration is

identical to the initial one, but with the re-scaled para-
meters. Hence, the coalescence process is self-similar.

The produced first generation filaments will be inter-
acting with each other and merge again to yield the
second generation. The coalescence process will then
continue in a self-similar way. Note that the coales-
cence times at each stage are not necessarily the same.
Taking into account that at the k-th merger level, i.e.,
after k pairwise mergers: Ik = 2kI0, µk = 2kµ0, Dk =
2k/2D0, dk ∼ Dk/2, we obtain

τk,NR = τ0,NR, τk,R = 2k/2τ0,R. (14)

Since the coalescence time is independent of k while
the filaments are non-relativistic, whereas the distance
between them increases, the typical velocities of the
merging filaments grow with time and, will approach
c, as vm,k = 2k/2vm0. The transition from the non-
relativistic regime to the relativistic one occurs after
about k∗ mergers:

k∗ = 2 log2(c/vm0), (15)

where vm0 is set by the initial state of the system, Eq.
(12).

Finally, it is instructive to present the evolution
of the parameters as a function of physical time, t,
rather than the merger level, k. Apparently, it takes
t =

∑k
k′=0 τk′ to complete k mergers, where τk is given

by Eq. (14). Thus, for the non-relativistic and rela-
tivistic cases respectively, we have: k = t/τ0,NR and
k ' 2 log2 [(t/τ0,R)]. Thus, the magnetic field correla-
tion length increases as a function of time as

λB(t) = D02t/(2τ0,NR), λB(t) ' ct, (16)

in the non-relativistic and relativistic regimes, respec-
tively. Note that the last expression is an approxima-
tion at large times t À τ0,R, i.e., at large k À 1.

We now represent the main results in terms of the
parameters of a shock and IGM. First, the initial sepa-
ration between the filaments, D0, must be comparable
to the characteristic correlation length of the magnetic
field produced by the instability. This length at the on-
set of the instability is, in turn, set by the wavenumber
of the fastest growing mode: λs ' c/ωp,s. However,
we cannot set this scale λs as D0 because, as indicated
by 3D PIC e−e+ simulations (Silva, et al. 2003), εB is
not constant in time at the beginning of the nonlinear
filament interaction (at t ∼ 10ω−1

p,s). Hence the above
analysis is not applicable in such a regime. In fact, it
takes few plasma times, ω−1

p,s, in their simulations for
εB to attain its asymptotic value. The field correlation
scale at this moment (t ∼ 15ω−1

p,s) is somewhat larger
than λs. We include this uncertainty via the parameter
η > 1 as follows:

D0 ∼ η (c/ωp,s). (17)

Second, using
∮

B·dl = (4π/c)I, we express the current
I0 in terms of the equipartition parameter, εB , as I0 ∼
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Fig. 4.— The 2D structure of the magnetic fields in e−e+ (top panel) and e−p with mp/me = 1860 (bottom panel) runs at
various times. The change of the field correlation length with time is clearly seen. The growth of this length is substantially
slower and the magnetic field filling factor is respectively larger in the electron-proton run.

η
√

εB (msvshc2/e). Third, the mass per unit length of
a filament is µ0 ∼ msnsD

2
0.

The temporal evolution of the field correlation scale
is determined by Eq. (16), where τ0,NR is given by
(11). The coalescence time may be written as

τ0,NR ∼=
η (c/vsh)√

εB ωp,s
∼ 105 ω−1

p,s, (18)

Hereafter we assumed the typical values: εB ∼ 10−3

and η ∼ 1. The maximum merger velocity vm0, Eq.
(12), in terms of the speed of light is vm0/c ∼ √

εB ∼
0.03. The transition from the non-relativistic to rel-
ativistic coalescence regime occurs after k∗ mergers,
given by Eq. (15). i.e., at the time

t∗ = 2 log2(c/v0m) τ0,NR ∼ 10τ0,NR. (19)

ii) high-resolution 2D simulations

We now compare our theoretical predictions with the
results of particle-in-cell numerical simulations, per-
formed using code OSIRIS. We have performed 2D sim-
ulations (1280 × 1280 cells, 128.0 × 128.0 (c/ωp,e)2, 9
particles/(cell×species), 4 species) of the collision of
electrically neutral clouds (electron-positron – e−e+,
and electron-proton – e−p) moving in the ẑ direction,
across the xy simulation plane, with parameters sim-
ilar to those in (Silva, et al. 2003). In order to save
on computation time and trace a substantial period
of field evolution, we set the particles bulk velocity to
vsh ' v ' 0.6c. Relativistic effects do not play any sig-
nificant role because the corresponding Lorentz factor
is γsh ∼ 1.17.

Figure 4 shows the 2D structure of the magnetic
fields in e−e+ and e−p with mp/me = 1836 runs at var-
ious times. The change of the field correlation length
with time is clearly seen. The growth of this length is
substantially slower and the magnetic field filling factor
is respectively larger in the electron-proton run. The
temporal evolution of λB as measured in the simula-
tions is shown in Figure 5. Both a non-power-law non-

Fig. 5.— Temporal evolution of the field correlation length
in electron-positron (solid line) and electron-proton (dashed
line) runs. In the range 7/ωp,e < t < 50/ωp,e, λB ∝ tα with
α ' 0.8.
relativistic regime (until t ≈ 10−20/ωp,e) and a power-
law regime are clearly seen. The power-law fits yield
λB(t) ∝ tα with α ≈ 0.8. Note also that the second
power-law segment with the same index is present at
t ∼> 100/ωp,e in e−p run, indicating proton filament
coalescences. A similar behavior was also observed in
3D simulations, but the significantly larger simulation
planes presented here allow for improved statistics. At
late times t ∼> 100/ωp,e, the evolution of λB rolls off
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Fig. 6.— Temporal evolution of the field strength for dif-
ferent α’s.

and is slower when the number of filaments in the sim-
ulation box becomes relatively small.

Now we can answer the question: Why the gen-
erated magnetic fields do not rapidly decay back to
zero as soon as the instability shuts off? The answer
is: The produced fields and the corresponding currents
self-organize and form a quasi-two-dimensional distri-
bution. A typical magnetic field gradient scale grows
with time very rapidly, with approximately the light
crossing time ∝ t0.8; whereas the particle diffusion is
a substantially slower process. Hence, diffusive dis-
sipation is drastically reduced. To illustrate this, we
consider the field diffusion equation

∂tB = −κ∂2
xxB (20)

with the dissipation coefficient, κ, being constant, for
simplicity. Approximating the spatial derivative as
∂x ∼ λB(t)−1 ∼ λ−1

0 (t/t0)−α, where λ0 and t0 are con-
stants and α > 1/2, we obtain the scaling of B with
time as

B(t) ∝ exp
(
−

∫
λ−2

B (t) dt

)
(21)

∝




exp
(−t1−2α

)
, α < 1/2,

tδ, α = 1/2,
exp

(
t1−2α − t1−2α

0

)
, α > 1/2,

(22)

where t0 and δ are some constants depending on κ, λ0

and other parameters. These relations are illustrated
in Figure 6.

We also note that in some respect, the field scale
growth is analogous to the inverse cascade in two-
dimensional magnetohydrodynamic (MHD) turbulence
(see, e.g., Biskamp & Bremer, 1994). The crucial dif-
ference is, however, the entirely kinetic nature of the
process; at such small scales ∼ c/ωp the MHD approx-
imation is completely inapplicable.

III. REALISTIC 3D SIMULATIONS OF A
SHOCK

Simulations described above were aimed at the study
of the linear and nonlinear dynamics of the counter-
streaming instability itself. It is worthwhile, however,

Fig. 7.— Parallel momentum of IGM particles in the 3D
shock simulations at two different times. The formation and
kinematics of the forward and reverse shocks are clearly seen
(their positions are marked by arrows). The simulations
are done in the frame co-moving with the forward shock
(propagating to the right in the lab frame).

to perform a realistic simulation of the formation of col-
lisionless shock, without the assumptions of initial spa-
tial inhomogeneity and periodic boundary conditions.
Such a simulation was performed by our group using
code OSIRIS. The results of this simulation are shown

Fig. 8.— Magnetic and electric fields averaged over the
simulation box in 3D shock simulations as a function of
time. The generation of predominantly transverse, sub-
equipartition magnetic fields is observed.
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in Figures 7 and 8, the former representing the paral-
lel momentum of the IGM particles, the latter shows
the volume-averaged magnetic and electric field. The
simulation parameters correspond to the strong shock
with the Mach number M ' 6, while the artificially
large shock velocity, vsh ' 0.5c, was chosen in order
to save on the computational time (note, from Eq.18,
that the coalescence time is inversely proportional to
vsh). Relativistic effects play a negligible role in this
run. We have also chosen that the electrons and the
protons have the same thermal velocities, not temper-
atures, because Coulomb collisions are very rare.

In contrast to the theoretical predictions of Schlick-
eizer & Shukla (2003), who argued that only shock with
Mach number greater than 43 are capable of produc-
ing magnetic fields, we demonstrate that M ' 6 shock
efficiently generates a sub-equipartition field. The rea-
son for the disagreement is that Schlickeizer & Shukla
(2003) assumed in their analysis that the electrons and
the protons in the inter-penetrating streams have the
same energy (temperature). While this assumption is
valid for the IGM particles, it fails for the particles
reflected from the shock: Coulomb collisions are very
inefficient in such tenuous plasmas and equipartition
between the electrons and protons cannot establish at
the shock front. Instead, the velocities of the reflected
particles are the same for the protons and electrons and
are comparable to the shock velocity.

IV. SUMMARY OF THE RESULTS

We demonstrated that magnetic fields are naturally
generated in collisionless cosmological shocks. These
magnetic fields have random orientation and predom-
inantly lie in the plane of the shock. The correlation
length (in the shock plane) of the fields is very small:

λB ∼ 2πc/ωp ' 1010 n
−1/2
IGM,−4 cm. (23)

The magnetic field generation occurs very fast, with
the e-folding time

τB ∼ (c/vsh)ω−1
p ' 2× 102 v−1

sh,7 n
−1/2
IGM,−4 s. (24)

It is these fields that pitch-angle scatter the particles
and introduce effective collisions in the otherwise colli-
sionless system. Since it takes N ∼ few× 10 e-foldings
to produce strong fields, the shock thickness is, thus,
determined as

∆sh ∼ N τB vsh ∼ N λB ∼ few× 1011 n
−1/2
IGM,−4 cm.

(25)
At the shock front, the magnetic field energy density
reaches about a quarter of the initial kinetic energy
density, εB ∼ 0.25, and, hence, constitute a similar
fraction of the thermal energy density of the shocked
gas.

Farer downstream, at distances much larger that ∆sh

from the front, the magnetic field strength drops and

asymptotes at

εB =
B2/8π

mpnIGMv2
sh/2

∼ B2

8πpsh
∼ 10−3...10−4, (26)

where psh is the gas pressure behind the shock. the
actual number depends on complicated nonlinear dy-
namics of the currents in the downstream region. This
value of the equipartition parameter corresponds to the
magnetic field strength of order

B ∼ 10−8 ε
1/2
B,−3 vsh,7 n

1/2
IGM,−4 gauss. (27)

The magnetic field correlation length increases rapidly
with time:

λB(t) ∼ c t, (28)

which makes these fields to be weakly coupled to dis-
sipation. Hence the shock-generated magnetic fields
produced by large-scale structure shocks can populate
cosmologically large volumes.
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