Simulation of relativistic outflows in astrophysics

Indranil Chattopadhyay

indra@canopus.cnu.ac.kr

Dept of Astronomy & Space Science,

Chungnam National University,

Daejeon, South Korea.

Collaborator: Prof. Dongsu Ryu (CNU)

Plan of Talk

- A short introduction on relativistic flow & Equation of State.
- A brief look on the code.
- Relativistic outflows.
- Concluding Remarks.

Introduction

• We encounter relativistic fluid in relativistic astrophysical jets (galactic/extra galactic), GRBs or say matter falling onto compact objects.

- • We encounter relativistic fluid in relativistic astrophysical jets (galactic/extra galactic), GRBs or say matter falling onto compact objects.
- •■ A fluid can be relativistic on account of (a) Bulk velocity $(v\sim c)$ or (b) temperature (thermal energy $~\gtrsim$ rest energy).
- • We encounter relativistic fluid in relativistic astrophysical jets (galactic/extra galactic), GRBs or say matter falling onto compact objects.
- •■ A fluid can be relativistic on account of (a) Bulk velocity $(v\sim c)$ or (b) temperature (thermal energy $~\gtrsim$ rest energy).
- • Examples: (a) Accretion on to BH: At ^r→large, ^v∼⁰ & ^Tp[∼]small **;** At ^r∼few10^rg, $v\gtrsim0.1c,\, T_p{\sim}10^{12}K$; The adiabatic index $(c_p/c_v)\ \gamma{\rightarrow}5/3{\rightarrow}4/3.$
- • We encounter relativistic fluid in relativistic astrophysical jets (galactic/extra galactic), GRBs or say matter falling onto compact objects.
- •■ A fluid can be relativistic on account of (a) Bulk velocity $(v\sim c)$ or (b) temperature (thermal energy $~\gtrsim$ rest energy).
- • Examples: (a) Accretion on to BH: At ^r→large, ^v∼⁰ & ^Tp[∼]small **;** At ^r∼few10^rg, $v\gtrsim0.1c,\, T_p{\sim}10^{12}K$; The adiabatic index $(c_p/c_v)\ \gamma{\rightarrow}5/3{\rightarrow}4/3.$
- •(b) Jets: Originates at $r \sim \text{few} 10r_g$ with $v \sim 0$, and $T_p \sim 10^{12} K (\gamma \sim 4/3)$; at $r{\sim}1000r_g$ $v\gtrsim0.9c$, $T_p{\sim}$ moderate ($5/3\gtrsim\gamma\gtrsim4/3)$: As the jet hits ambient medium, $v \sim$ small, but T_p increases ($\gamma \sim 4/3$).
- • We encounter relativistic fluid in relativistic astrophysical jets (galactic/extra galactic), GRBs or say matter falling onto compact objects.
- •■ A fluid can be relativistic on account of (a) Bulk velocity $(v\sim c)$ or (b) temperature (thermal energy $~\gtrsim$ rest energy).
- • Examples: (a) Accretion on to BH: At ^r→large, ^v∼⁰ & ^Tp[∼]small **;** At ^r∼few10^rg, $v\gtrsim0.1c,\, T_p{\sim}10^{12}K$; The adiabatic index $(c_p/c_v)\ \gamma{\rightarrow}5/3{\rightarrow}4/3.$
- •(b) Jets: Originates at $r \sim$ few10 r_g with $v \sim 0$, and $T_p \sim 10^{12} K (\gamma \sim 4/3)$; at $r{\sim}1000r_g$ $v\gtrsim0.9c$, $T_p{\sim}$ moderate ($5/3\gtrsim\gamma\gtrsim4/3)$: As the jet hits ambient medium, $v \sim$ small, but T_p increases ($\gamma \sim 4/3$).
- • \bullet It is important to use correct γ , influences the value of $c_s \Rightarrow$ would affect T distribution, as **well as structure propagations:** Are we equipped to do so?

•• The equations of motion are $(c=1)$:

$$
(\rho u^{\nu})_{;\nu} = 0, \qquad T^{\mu\nu}_{;\nu} = 0
$$

 $ρ, u^μ$ are proper density and 4-velocity, $T^{μν} = ρh^{μμ}u^ν + pg^{μν}$; h =specific enthalpy = $(e + p)/\rho$, e total proper energy density and p pressure.

•• Number of eqs $= 5$; Number of variables $= 6$.

- • \bullet To resolve, one assumes an EoS *i.e.,* $h {\equiv} h(p,\rho)$ or $e{\equiv}e(p,\rho).$
- •**In non-relativistic regime the internal energy density is given by**

$$
e_{int} = \frac{p}{(\gamma - 1)}
$$

•• the most favoured EoS in RHD is (hereafter ID) is

$$
h = 1 + \frac{\gamma \Theta}{\gamma - 1}
$$
, or $e = \rho + \frac{p}{\gamma - 1}$

 $\Theta=p/\rho$ a temperature like variable.

$$
n = \rho \frac{\partial h}{\partial p} - 1, \qquad c_s^2 = -\frac{\rho}{nh} \frac{\partial h}{\partial \rho}.
$$

$$
n = \rho \frac{\partial h}{\partial p} - 1, \qquad c_s^2 = -\frac{\rho}{nh} \frac{\partial h}{\partial \rho}.
$$

• For ID,
$$
n \& c_s
$$
:
\n
$$
n = \frac{1}{\gamma - 1}, \qquad c_s^2 = \frac{\gamma \Theta(\gamma - 1)}{\gamma \Theta + \gamma - 1},
$$

 $\Theta \rightarrow \infty$, and for $\gamma > 2$, $c_s > 1$!!!

$$
n = \rho \frac{\partial h}{\partial p} - 1, \qquad c_s^2 = -\frac{\rho}{nh} \frac{\partial h}{\partial \rho}.
$$

• For ID,
$$
n
$$
 & c_s :
\n
$$
n = \frac{1}{\gamma - 1}, \qquad c_s^2 = \frac{\gamma \Theta(\gamma - 1)}{\gamma \Theta + \gamma - 1},
$$

 $\Theta \rightarrow \infty$, and for $\gamma > 2$, $c_s > 1$!!!

 \bullet • Not surprising! ID is hijacked from Newtonian physics!

$$
n = \rho \frac{\partial h}{\partial p} - 1, \qquad c_s^2 = -\frac{\rho}{nh} \frac{\partial h}{\partial \rho}.
$$

• For ID,
$$
n \& c_s
$$
:

•

$$
n = \frac{1}{\gamma - 1}, \qquad c_s^2 = \frac{\gamma \Theta(\gamma - 1)}{\gamma \Theta + \gamma - 1},
$$

 $\Theta \rightarrow \infty$, and for $\gamma > 2$, $c_s > 1$!!!

- •• Not surprising! ID is hijacked from Newtonian physics!
	- **(a) In ID** γ **or** ⁿ **has no temperature dependence**
		- (b) Gives unphysical wave speeds !

$$
n = \rho \frac{\partial h}{\partial p} - 1, \qquad c_s^2 = -\frac{\rho}{nh} \frac{\partial h}{\partial \rho}.
$$

• For ID,
$$
n \& c_s
$$
:

•

•

$$
n = \frac{1}{\gamma - 1}, \qquad c_s^2 = \frac{\gamma \Theta(\gamma - 1)}{\gamma \Theta + \gamma - 1},
$$

 $\Theta \rightarrow \infty$, and for $\gamma > 2$, $c_s > 1$!!!

- •• Not surprising! ID is hijacked from Newtonian physics!
	- **(a) In ID** γ **or** ⁿ **has no temperature dependence**
		- (b) Gives unphysical wave speeds !
- •Are we free to use any other **arbitrary EoS**?

•• Relativistic kinetic theory imposes a strong constrain on EoS, known as Taub's inequality,

 $(h - \Theta)(h - 4\Theta) \geq 1$

•● ID do not satisfy TAUB's inequality (TI) for all values of Θ and $\gamma{\Rightarrow}$ ID is relativistically wrong!

• Chandrashekhar (1934), Synge (1957) calculated the exact EoS for simple gas (RP)

$$
h = \frac{K_3(1/\Theta)}{K_2(1/\Theta)},
$$

 K_{2} and K_{3} are modified Bessels function of second kind & of order 2 & 3.

- • This accuracy comes at expense of extra computational cost as shown by Falle & Komissarov (1996)! \Rightarrow Not suitable for Numerical RHD!
- •**What do we do?** Try and propose ^a new equation of state

New EoS

- \bullet • New EoS must satisfy:
	- (a) Taub's Inequality for all Θ!
	- (b) Should give $\gamma \rightarrow 5/3$ (or $n \rightarrow 3/2$) for $\Theta \rightarrow 0$ & $\gamma \rightarrow 4/3$ (or $n \rightarrow 3$) $\Theta \rightarrow \infty$!
	- (c) Good fit to RP!

New EoS

• Our proposed EoS (RC) is,

$$
\frac{p}{e-\rho} = \frac{3p+2\rho}{9p+3\rho}; \quad \text{or} \quad h = 2\frac{6\Theta^2+4\Theta+1}{3\Theta+2}.
$$
 (iv)

•Expression of n & c_s with RC EoS:

$$
n = 3\frac{9\Theta^2 + 12\Theta + 2}{(3\Theta + 2)^2}, \qquad c_s^2 = \frac{\Theta(3\Theta + 2)(18\Theta^2 + 24\Theta + 5)}{3(6\Theta^2 + 4\Theta + 1)(9\Theta^2 + 12\Theta + 2)}.
$$

 \bullet • RC is extremely accurate!

$$
\frac{|h_{\rm RP}-h_{\rm RC}|}{h_{\rm RP}}\lesssim 0.8\%
$$

New EoS

•Comparing various quantities top to bottom (i) n, (ii) γ , (iii) c_s ; for RC, ID($\gamma = 4/3$), $\mathsf{ID}(\gamma=5/3).$ Simulation of relativistic outflows in astrophysics – p.7/1

- •We have implemented RC and developed ^a new code (based on TVD scheme)!!
- •**• The full eigen structure has been derived**
- • The **Jacobian matrix** and the **eigen structure is derived without assuming** any exact form of h (EoS)
- •• This makes the code ideal to compare the effect of various EoS
- •**•** For the details of the code and its test runs please see Ryu, Chattopadhyay, Choi (2006)

•**The equations of motions in conserved form** $[(\rho u^{\nu})_{;\nu} = 0, T^{\mu\nu}_{;\nu} = 0]$ **:**

$$
\frac{\partial \vec{q}}{\partial t} + \frac{\partial \vec{F^j}}{\partial x^j} = 0, \tag{v}
$$

•• The conserved quantities are:

$$
\vec{q} = \begin{bmatrix} D & M^i & E \end{bmatrix}^T, \qquad \vec{F}^j = \begin{bmatrix} Dv^j & M^i v^j + p\delta^{ij} & (E+p) v^j \end{bmatrix}^T.
$$

 \bullet And the transformation relation bet n observer frame to fluid rest frame are:

$$
D = \Gamma \rho, \quad M^i = \Gamma^2 \rho h v^i, \quad E = \Gamma^2 \rho h - p,\tag{vi}
$$

$$
\Gamma = (1 + u_i u^i)^{1/2} = 1/(1 - v^2)^{1/2}
$$

• Jet RC— $log(\rho)$: t=3; Res:1024×256; $Y = 4X$; $X = 21.3 \times$ jet radii (r_d) ; Init cond: $v_x=0.9, \, \rho_j=0.1, \, \rho_a=1, \, p=0.01;$ Initial jet length $=r_d.$

 \bullet \bullet Jet RC— $log(\rho)$: t=6;

• \bullet Jet RC— $log(\rho)$: t=9;

How does solutions with ID EoS look like at this time?

 \bullet \bullet Jet ID $\gamma = 5/3 - log(\rho)$: t=9; Res: $1024{\times}256; Y = 4X; X = 21.3{\times}$ jet radii $(r_d);$ Init cond: $v_x=0.9, \rho_j=0.1, \rho_a=1, p=0.01;$ Initial jet length $=r_d.$

• \bullet Jet ID $\gamma=4/3$ — $log(\rho)$: t=9; Res: $1024\times256;$ $Y=4X;$ $X=21.3\times$ jet radii(r_{d}); Init cond: $v_x=0.9, \, \rho_j=0.1, \, \rho_a=1, \, p=0.01;$ Initial jet length $=r_d.$

ID $\gamma=4/3$ definitely is quite different, but why?

- •**•** As jet hits ambient medium it heats up
- • \bullet A part of it fbws back.
- • \bullet With ID $\gamma=5/3$ c_s is higher, it puffs up more, interacts with back fbwing material, instabilities sets in
- With $\gamma=4/3$, remains thin, limited back reaction, beam structure almost intact!
- •• With RC correct c_s gives a correct mode of interaction
- • \bullet The bow shock is in median position between ID $\gamma=5/3$ and $\gamma=4/3$
- • \bullet With $\gamma = 4/3$, even moderate injection Γ , produces near perfect beam structure
- •**•** Let us jack up injection velocity

Density (log), ID $4/3$, t=12 2.0 0.751 0.323 1.5 -0.105 -0.532 1.0 -0.960 0.5 -1.388 -1.815 0.0 $\overline{2}$ $\sqrt{6}$ \circ $\overline{4}$ 8

•Density contours at $t = 12$. Upper panel RC, lower panel ID ($\gamma = 4/3$), $v_{xi} = 0.95$.

•Sound speed at $t=12$. Upper panel RC, lower panel ID ($\gamma=4/3$), $v_{xi}=0.95.$

•Shocks at $t = 12$. Upper panel RC, lower panel ID ($\gamma = 4/3$), $v_{xi} = 0.95$. Should affect emitted radiation.

 $t=12;$ Density: $v_{xi}=0.96;$

solution with RC is faster!!!

•

 \bullet Strong-Shock Tube — t=0.18; Init cond:

$$
(\rho, v^x, v^y, v^z, p) = (1, 0, 0.99, 0, 10^3); 0 \le x \le 0.5
$$

= (1, 0, 0.99, 0, 10⁻²); 0.5 < x \le 1.

Simulation of relativistic outflows in astrophysics $-$ p.10/11

e.g., Ryu, Chattopadhyay, Choi (2006)

• Using ID EoS and some intermediate values of γ is not good, since γ generated by the interaction of the outflow with the the ambient medium

C; $v_{xi} = 0.99$; n is variable and is neither 3 nor $3/2$ Simulation of relativistic outflows in astrophysics – p.10/11

 \bullet

• RC $v_{xi} = 0.998$, upper panel density and lower panel Γ

Concluding Remarks

- •• ID EoS is relativistically wrong.
- •Considering temperature dependent adiabatic/polytropic index is important.
- •**Internal structure produced by RC is different.**
- •**•** These internal shocks will produce a different spectrum.
- • Injection variables derived by analyzing observational data will also be faulty if wrong EoS is chosen.
- •**The jet head moves slower or faster than that modeled by ID EoS.**
- • Adiabatic index depends on the thermodynamic properties of the jet, which in turn is determined by the complicated interaction with the ambient medium, thus cannot be assigned apriori.
- •• Our preliminary investigation suggests, it will be interesting to investigate propagation of jets through non uniform medium. Simulation of relativistic outflows in astrophysics – p.11/1