Structured Red Giant Winds with Magnetized Hot Bubbles and the Corona/Cool-Wind Dividing Line

Takeru K. Suzuki

School of Arts & Sciences, University of Tokyo,

Collaborator (first part of talk) : S. Inutsuka (Kyoto)

Introduction

Why Mass Loss / Stellar Wind ?

All stars are losing their masses.

Control Stellar Evolution at Later Epochs

• ~ Half of initial mass lost before Planetary Nebulae/Supernovae

 Low- Intermediate Stars : Evolution to "Unusual" Stars (Blue Horizontal Branch Stars; Yi et al. 1997)

Winds Affect Environments

•Sun => Earth; Space Weather

• Proto-Star Winds => Planetary Formation

Stellar Winds in HR diagram

Today's talk : Main Sequence & Red Giant Stars with Low & Intermediate Mass Turbulent/Wave Driven Winds

Global Energy Transfer

Nuclear Reaction at the Center
=> Radiation & Neutrino
=> Surface Convection => Stellar Wind
Alfven Waves in Open Field Regions

Wave-Driven Winds

Turbulent motions excite various modes of MHD (precisely plasma) waves

Alfven Wave is most appropriate

•(Almost) No steepening => less dissipative => propagate a longer distance

•(Compressive waves dissipate too quickly)

Dissipation of Alfven waves

=> Heat and accelerate atmosphere

Outline

1D MHD simulations of Alfven wave-driven stellar winds

Solar Corona/Wind

The sun is a "reference" to various stars
 Suzuki & Inutsuka 2005, ApJ, 632, L49; 2006 J. Geophys. Res. 111, A06101;
 Suzuki 2006, ApJ, 640, L75

Red Giant Winds

• Evolution of stellar winds from Main Sequence to Red Giant

Disappearance of Steady Corona and Onset of Massive Cool Wind

Suzuki 2006, ApJ, submitted (astro-ph/0608195)

Solar Corona & Wind

Jul.11th, 1991 Full Eclipse in Hawaii(NASA & ESA); Y

Photosphere(Surface) : 6000K
 Corona : 1M(10^6)K
 How to Heat up ?

Hot plasma streams out from the corona (Solar Wind).

Energetics

Turbulence => B-field Fluctuations => Upgoing Waves => Heating & Acceleration (bulk flow)

Cranmer & van Ballegooijen 2005

 $\sim 10^8 {\rm erg~cm^{-2}s^{-1}} \ (\frac{\rho}{10^{-7}{\rm gcm^{-3}}}) (\frac{\delta v}{1{\rm km/s}})^3 \ \sim \ 100 \ {\rm times \ of \ required}$

- Energetics : Non-problematic
- Main difficulty : How to lift-up the energy and let it dissipate at appropriate location in the stratified atmosphere

Huge Density Gap

Gravity (Stratified Atmosphere) plays an essential role. Alfven Waves (~5 min) : Nonlinear & Non-WKB

Amplification of amplitude (If ρδv²v_A conserves ⇒ δv ↑ for ρ ↓)
deformation of shape (λ > v_A(dv_A/dr)⁻¹)
No work treats the entire region even in 1D

Simulation of Solar Wind

Solve Global Energy Transfer as self-consistent as possible Calculation Region : Photosphere - 0.3AU

- •15 orders of mag. density difference
- Super-radial expansion of flux tube
- Outgoing Boundary Condition

Inject Fluctuations with 1km/s from Photosphere

- Spectrum : 1/f around 5 min.
- Time-dependent MHD with

Radiative Cooling and Conduction

- Realistic Chromosphere/Transition Region/Low Corona
- For Nonlinear and Non-WKB waves

But, Need Compromise

1D & 1 Fluid

2D/3D or kinetic treatments are impossible (CPU/Memory resources)

Only Low-Freq. (<0.1Hz) Alfven Waves by ~minutes Oscillation

•NO transverse cascade and loncyclotron waves

Chromosphere/Transition Region/Corona

We use Spitzer Conduction : $F = \kappa_0 T^{5/2} \frac{dT}{dr} (\text{erg cm}^{-2} \text{s}^{-1})$

Comparison with Observations

Suzuki & Inutsuka 2005, ApJ, 632, L49

Observations

•(r<6Rsun) : SoHO(CDS/UVCS/SUMER/LASCO)</p>

• (r>8Rsun) : Inter-Planetary Scintillation (Nagoya-STE;EISCAT)

"Forward Simulation" naturally explains obs. corona/SW.

Time-Distance Diagram (contour)

In B_perp & v_perp, Not only outgoing but incoming Alfven waves
 In rho & v_r, slow MHD (~sound) waves

Dissipation of Waves

(Wave Action Normalized at 1.02Rs for Superradial Expansion of Flux Tube) Suzuki & Inutsuka 2005, ApJ, 632, L49

- Only ~ 0.1% of the initial energy remains at 0.3AU
 85% is reflected back before reaching corona.
- 15% => Coronal Heating & SW acceleration

Coronal Heating / Wind Acceleration

Most Dominant Process in Dissipation of Outgoing Alfven Waves

Generation of MHD Slow (Sound) Waves

 Variation of magnetic pressure, dB_perp, of Alfvenic fluctuations excite longitudinal motions.

Kudoh & Shibata 1999; Moriyasu et al.2004 Slow Waves => (Steepen) => Slow Shocks

Slow shock converts both magnetic and kinetic energy to heat.

Energy & Momentum of Outgoing Alfven Wave

=> Slow Waves => Slow Shocks => Plasma

(Coronal Heating & Solar Wind Acceleration)

Density fluctuations(slow-mode) become Mirrors to reflect Alfven waves.

Decay Instability by three-wave interaction

(outgoing Alfven => incoming Alfven + outgoing slow MHD)
 Goldstein 1978; Terasawa et al. 1986

Nonlinearity

Red Giant Winds

From Main Sequence to Red Giant

Disappearance of Steady Corona & Onset of Massive Winds

Wind becomes highly time-dependent

Probably across the X-ray Dividing Line (Linsky & Haisch 1979)

Set-up

Replace the Sun with Red Giants How the wind properties evolve with the stellar evolution ?

Calculation Region : Photosphere ~ 20-30 stellar radii

•1D Super-Radially Open Flux Tube

Fluctuations from Photospheres

- dv <= Convective flux (negative dependence on gravity) (Renzini et al.1977; Stein et al.2004; Shibahashi 2005)
- Spectra (period) <=> pressure scale height ~T/g
- Transverse => Alfven Waves
- Longitudinal (Sound waves) : ineffective due to rapid damping

Evolution of Winds

Suzuki 2006, ApJ, submitted (astro-ph/0608195)

(<=time averaged structures)

As a star evolves

- Disappearance of Steady Corona
- Onset of Cool Dense Wind

Why dense ? Gravity confinement is ineffective

Typical Wind Properties

Suzuki 2006, ApJ, submitted (astro-ph/0608195)

(left : evolved)

As a star evolves Mass loss rate raises rapidly

- Temperature drops drastically
- Speed also drops

The gap at log g~3? Thermal Instability

Escape Velocity

Cooling Function

Landini & Monsignori-Fossi 1990

>~0.1MK : Thermally Unstable
 >1MK : Stabilization by Conduction
 => ~10^4K or >~ 1MK

Structured Red Giant Winds

Suzuki 2006, ApJ, submitted (astro-ph/0608195)

Solid:Snap-shot dashed:time-averaged

- Magnetized hot bubbles, embedded in
- Cool dense chromospheric winds

Thermal instability drives time-dependent winds

Creation of Bubble

Time-dependent Winds

Mass loss rate varies a factor of ~5000

 Steady-state calculations (most previous works) are not good to study acceleration mechanism. (O.K. to derive average mass loss rate)

Intermittent X-ray

T<2x10^4 K; 2x10^4 K < T < 5x10^5 K; 5x10^5 K < T (10^6 K < T)
 Observed X-ray from Hybrid Stars can be explained by magnetized hot bubbles?

But, need to take into account absorption by outer material

Summary

We performed 1D MHD simulations of Alfven wave-driven solar and stellar winds.

Coronal heating and solar wind acceleration are natural consequence of the surface convection.

• Nonlinear dissipation of low-freq.(MHD) Alfven waves seems plausible

Wind properties change with stellar evolution; Importance of gravity effect and thermal instability (cooling)

- Disappearance of steady corona
- Highly time-dependent & structured red giant winds