Application of Picard-Chebyshev method to orbital dynamics

H. Arakida (Waseda Univ.), T. Ito, and T. Fukushima (NAOJ)

1 What is Picard-Chebyshev method?

1.1 Outlines

- Considering the following ordinary differential equation

$$
\frac{d x}{d t}=f(x, t), \quad x\left(t_{0}\right)=x_{0}
$$

- Initially starting from global approximate/rough solution.
- Iteratively converging the solution using Picard iteration method:

$$
x^{n}(t)=x_{0}+\int_{t_{0}}^{t} f\left(x^{n-1}\left(t^{\prime}\right), t^{\prime}\right) d t^{\prime}
$$

- Generally the integrand is unintegrable then expanding it by Chebyshev polynomials $T_{i}(t)$ s with coefficients F_{i} s,

$$
\underbrace{f(x, t)}_{\text {unintegrable }} \Rightarrow \underbrace{F_{0} T_{0}(t)+F_{1} T_{1}(t)+F_{2} T_{2}(t)+\cdots+F_{N} T_{N}(t)}_{\text {integrable }}
$$

- Chebyshev polynomials are analytically integrable like a trigonometric functions.
- Therefore the aim of this method is to obtain coefficients $X_{i} \mathrm{~s}$ and determine the function form of solution in given interval $[a, b]$ as

1.2 Schematic diagram

1.3 Previous work

- Fukushima (1997a) : Application to perturbed harmonic oscillator
- Fukushima (1997b) : Vectorization of perturbed harmonic oscillator
- In this poster we show Picard-Chebyshev method is useful tool in an orbital dynamics.

2 Procedure of Picard-Chebyshev method

2.1 Main sequence

1. Letting number of terms of n-th iteration be $N^{(n)}$ and representing as,

$$
f^{(n)}\left(x^{(n)}(t), t\right)=\sum_{j=0}^{N^{(n)-1}} F_{j} T_{j}(\tau), \quad x^{(n)}(t)=\sum_{j=0}^{N^{(n)}} X_{j} T_{j}(\tau)
$$

2. In this method, function evaluations are done by using zeros of $T_{N^{(n)}}(\tau)=0, \tau_{k}^{(n)}$;
$\tau_{k}^{(n)}=\frac{a+b}{2}-\frac{H}{2} \cos \left(\frac{(2 k-1) \pi}{2 N^{(n)}}\right), \quad k=1, \cdots, N^{(n)}, \quad H=b-a$
and using them,
$x_{k}^{(n)} \equiv x^{(n-1)}\left(\tau^{(n)_{k}}\right)=\sum_{j=0}^{N^{(n-1)}} c_{j k}^{(n)} X_{j}^{(n-1)}, \quad c_{j k}^{(n)}=\cos \left(\frac{j(2 k-1) \pi}{2 N^{(n)}}\right)$
3. By using $x_{k}^{(n)}, \tau_{k}^{(n)}$, evaluating f as $f_{k}^{(n)}=f\left(x_{k}^{(n)}, \tau_{k}^{(n)}\right)$
4. From orthogonality of discrete Chebyshev Polynomial (Rivlin 1974), the coefficients of f are expressed as,

$$
F_{0}^{(n)}=\frac{1}{N^{(n)}} \sum_{k=1}^{N^{(n)}} f_{k}, \quad F_{j}^{(n)}=\frac{2}{N^{(n)}} \sum_{k=1}^{N^{(n)}} c_{j k}^{(n)}
$$

5. Using integration formula (Rivlin 1974), coefficients $X_{i} \mathrm{~s}$ are calculated from F_{i} s. After some improvements to avoid the round-off error, coefficients $X_{i}^{(n)}$ are given as;

$$
\begin{aligned}
& X_{N^{(n)}}^{(n)}=\frac{H F_{N^{N^{(n)}-1}}^{n}}{4 N^{(n)}}, \quad X_{N^{(n)}-1}^{n}=\frac{H F_{N^{N^{(n)}-1}}^{n}}{4\left(N^{(n)}-1\right)} \\
& X_{j}^{(n)}=\frac{H}{j N^{(n)}} \sum_{k=1}^{N^{(n)}} s_{j k}^{(n)} g_{k}^{(n)}, \quad j=1, \cdots, N^{(n)}-2 \\
& \quad s_{j k}^{(n)}=\sin \left(\frac{j(2 k-1) \pi}{2 N^{(n)}}\right), \quad g_{k}^{(n)}=f_{k}^{(n)} s_{1 k}^{(n)} \\
& X_{0}^{n}=x_{0}-\sum_{j=1}^{N^{(n)}} X_{j}^{(n)} T_{j}\left(t_{0}^{\prime}\right)
\end{aligned}
$$

This part is possible to be vectorized/parallelized.

2.2 Determination of $N^{(n)}$

- There is yet empirical way only, and we adopt for n-th iteration,
$N^{(n)}=\min \left(\frac{n H}{\pi}, N_{\text {opt }}\right), \quad N_{\text {opt }}=\min M, \quad \sum_{j=M+1}^{N}\left|X_{j}\right| \leq \delta$

Contact address : arakida@edu.waseda.ac.jp
2.3 Convergence condition

- If $\left|\Delta x^{(n)}\right|$ achives the required accuracy, exit the iteration loop;
$\left|\Delta x^{(n)}\right| \equiv\left|x^{(n)}-x^{(n-1)}\right|=\sum_{j=0}^{N^{(n-1)}}\left|X_{j}^{(n)}-X_{j}^{(n-1)}\right|+\sum_{j=N^{(n-1)+1}}^{N^{(n)}}\left|X_{j}^{n}\right|$
3 Application to Orbital dynamics
3.1 Kepler Problem
- Adopting the circular solution as a initial (1st approx.) solution,

- No secular trend in positional error
$e-N$ relation

$H-N$ relation

3.2 Three body problem
- Motion of planar triangular Lagrange point L_{4}
- Initially starting from the disturbed orbit

Positional error in each iteration

Final positional error in linear scale

Error in conserved quantity (Jacobi constant)

$\delta r-N$ relation : fixed as $\epsilon=0.001$

$\epsilon-N$ relation : fixed as $\delta r=0.001$

Comparison of calculation time

- Comarison with 8th order symmetric multistep method
- Scalar calculation, $\epsilon=0.001$

3.3 Vectorization and parallelization

Parallelization of Kepler problem

$$
\begin{array}{l|ccc}
\hline \text { Number of PE } & 1 & 2 & 4 \\
1 / \text { Time } & 1 & 1.87 & 3.65 \\
\hline
\end{array}
$$

Vectorization efficiency of Three body problem

$$
V=T_{\mathrm{s} 2} / T_{\text {total }}=0.971, \quad A=T_{\mathrm{s} 2} / T_{\mathrm{V}}=15.32
$$

4 Summary and issues

Summary :

- Picard-Chebychev method works well for orbital dynamics
- In this method, errors in position and conserved quantities show no monotonic trend with respect to time t
- Usually positional error of numerical integrations increases monotonically with time t as $O(t)$ or $O\left(t^{2}\right)$, and in conserved quantities $O(1)$ or $O(t)$.
- Chebychev polynomials expressing the solution are quasi-periodic function then residuals also contain the quasi-periodic terms only.
- Errors in middle range are tend to be larger than in end points. This is because functions are evaluated by using zeros $\tau_{k} \mathrm{~s}$ which are distributed in end-points more dense than in middle area.
- Possible to speed up by vectorization/parallelization

Issues

- Development of code based on Gauss's planetary equation
- Deriving the determine formula of $N^{(n)}$
- For very long integration, introduction of piecewise Chebychev polynomials and its efficiency
- Completing parallelization of three body problem using MPI

Application

- Long term perturbed dynamics; planets, comets, and satellites
- Verification of general relativistic effects from motion of solar system bodies

