

An SKA System Overview East-Asia Consortium Meeting Korea P. Dewdney Nov 30, 2011

SKA1 Technologies

 Huge frequency range demands multiple technologies.

• Technologies mature enough to enter the design phase. Central Region

250 Dishes

50 Sparse Aperture Arrays Single pixel feed

Exploring the Universe with the world's largest radio telescope

SKA2 Technologies

Artist renditions from Swinburne Astronomy Productions

Central SKA Site

- SKA2 is \sim 10 x the collecting area of SKA1.
- Density increase of antennas is even larger in the central site.

Central SKA2 Site

SKA System Diagram

High Sensitivity & Signal Path Design

- The "theme of the SKA" is high sensitivity well beyond any existing radio telescope.
 - more collecting area; larger fields of view.
 - lowest possible noise.
- Note that high resolution is a "solved problem" in radio astronomy.
 - Just make the interferometer bigger.
- But reaching high sensitivity implies sufficient control of instrumental artefacts (imaging, spectral, time-domain) to remain below the noise.
- Attaining high sensitivity implies a high quality signal path.
 - beginning when the wavefront hits the upper atmosphere to the output of the science data processing.
- Design theme => high quality signal path.

Sky Noise

Low Frequency Aperture Arrays

Cambridge University
Log Periodic
(wide-band)
Prototype array element

MWA (USA, Australia, India)

LOFAR (Netherlands et al)

Sensitivity of AA-low vs Freq and ZA Using Log-Periodic Antenna

A/T Stokes I [m²/K] for SKA₁ (based on SKALA)

EMBRACE Prototype for AA-mid

Industry already involved in production.

First Fringes

Potentially very large fields-of-view

AA-mid element/array options

Dense AAs – medium frequencies, large

Dishes – medium-high freq., medium FoV

Key Requirements: Frequency range

- SKA1 requires 0.45 to 3 GHz
- SKA2 extends this to 10 GHz: this has implications for the dish design
 - Dish performance must meet specifications up to 10
 GHz (SKA1 dishes will not be replaced in SKA2).
 - Dishes must be capable of accommodating feed payloads to cover 0.45 (possibly ~0.30 MHz) to 10 GHz.

Key Requirements: Sensitivity (Aeff/Tsys)

- The Phase 1 Dish Array shall have a sensitivity of 10³ m² K⁻¹ in the frequency range 450 MHz -3 GHz.
- SKA2 requirement is 10⁴ m² K⁻¹ up to 10 GHz:
 - The aim will be to maximize sensitivity per €/\$ total system cost of ownership whilst meeting other requirements.

Options under consideration: Dishes and Payloads

- 1. Dishes
 - a) US TDP/DRAO
 - b) NAOC/JLRAT/CETC54
 - c) ASTRON/Airborne
 - d) NRF MeerKAT design
- 2. Feeds/Receivers and other "payloads"
 - a) Single-pixel Feeds (corrugated horns)
 - b) Wide-band SPFs (to be discussed under AIP session)
 - c) Phased Array Feeds (PAFs) (to be discussed under AIP session)
 - d) Receivers (various types of receiver systems)
 - e) Other equipment: digitizers, optical modulators

Thermoplastic Reinforced Composite Reflector

Structural Design

- Baseline design reflector:
 - a stiffened skin with several different stiffeners.
 - entire structure same thermoplastic carbon based material.
 - manufactured using a single automated production process.

Thermoplastic Reinforced Composite Reflector

Thermoplastic carbon reinforced composite material

Benefits

- Embed a thin metal mesh to add reflectivity performance
- Low thermal coefficient
- Low weight (-30%: metal option)
- Coating to protect from atmospheric influences easily applied
- Suitable for recycling and repairs
- Thermoplastic composite
 - tougher, more ductile and robust compared to metal options,
 - Combined with carbon fibres outperforms aluminium and steel constructions
- Reflectivity: Embedded thin metal mesh for good reflectivity; initial studies show >99% reflectivity

Offset-Optics Antenna Design

Deployment of PAFs. Mid-freq. Wide-Field.

oring the Universe with the world's largest radio telescope

SPF feed payloads

 This shows one concept to accommodate multiple feed payloads on a 'feed indexer', individually

Octave Bandwidth Corrugated Horns: A_e/T_{svs}

Frequency

Octave Bandwidth Corrugated Horns Noise Temperature

MeerKAT Dish Concept

DVAC-1: Offset design from JLRAT (China)

- Single integrated main reflector
- Minimal spar structure
- > Turning head design with a lead screw elevation actuator
- ➤ Support and interchange mechanism for a PAF and 3 SPFs or 2 WBFs.
- Can be designed with either metal or carbon fibre reflector skins

DVAC-2: Symmetric design from JLRAT (China)

- Single integrated main reflector
- Minimal spar structure
- ➤ Turning head design with a lead screw elevation actuator
- ➤ Four support legs and interchange mechanism for a PAF and 3 SPFs or 2 WBSPFs.
- Can be designed with either metal or carbon fibre reflector skins

Wide Band Single Pixel Feeds

Phased Array Feed Concepts

Offset Dish Decision/Option Tree

Symmetric Dish Decision/Option Tree

Panel Gaps – sidelobe pattern

Symmetric vs Offset Beam

ASKAP 3-axis Antenna Design

Exploring the Universe with the world's largest radio telescope

Signal Processing

EVLA Correlator

170 KW power, and 120 tons of cooling 17308672 control/monitor bits 1473536 registers 24832 FPGAs 256 boards 16 racks 1 room

Air Conditioners

(6'0") Chief

~100 dB / Shielded Chamber

Power Backup/Conditioners

Science/Image Processing

HPC (Supercomputer) performance needed for high-through-put image formation.

Software development for supercomputers will be one of SKA's major challenges. Primarily for SKA2.

Industry Opportunities

Summary of Opportunities in the SKA Signal Path

Potential Roles for Industry

- Managerial
 - Cost control
 - Contract management
 - Assisting with documentation management
 - Consultants on contractual matters
- Technical
 - Planning for operations
 - Site operations
 - RAM investigations
 - Carrying out some project management tasks
 - Design for manufacture
 - Linking infrastructure with other system elements
 - Detailed design work
 - Construction of verification program components
 - Assisting with the assembly of production data-packs
 - Power

Phased Approach to Technical Development

Exploring the Universe with the world's largest radio telescope

Design Review Series

Conceptual Design Reviews in 2011

- ≥23-25 Feb System delta-CoDR on SKA₁ √
- ➤ 14-15 Apr Signal Processing ✓
- ➤ 19-20 Apr Aperture Arrays ✓
- ≥28-30 Jun Signal Transport & Networks √
- > 13-15 July Dish and Dish Arrays ✓
 - > 2-3 Feb CoDR Dish Verification Antenna #1
 - > 5-7 Oct PDR Dish Verification Antenna #1
- ≥9-11 Nov Monitor & Control ✓
- > 27-28 Nov AA-mid ✓
- >TBA Software & Corresponding with the world's largest radio telescope

End