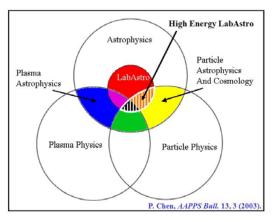
Overview of accelerator projects in Korea and their possible uses for laboratory astrophysics

> 3rd CHEA Workshop January 16 2019, Gyeongju, Korea

Moses Chung Department of Physics Ulsan National Institute of Science and Technology (UNIST) with many inputs from Korean accelerator/astrophysics community

My Personal View


REPRODUCING ASTROPHYSICAL PHENOMENA IN A CONTROLLED MANNER

EBIT (UNIST + MPIK et al.) + Beamline (PAL + UNIST et al.) = X-ray Astrophysics

PAL-XFEL

LABORATORY ASTROPHYSICS

EBIS (IBS + UNIST et al.) +

KOBRA (EHWA + SKKU et al.) LAMPS (KU + PNU et al.) = Nuclear Astrophysics

Accelerator Projects in Korea

RISP KHIMA KOMAC (Rare Isotope Science Project) (Korea Heavy-Ion Medical Accelerator) (Korea Multi-purpose Accelerator Complex)

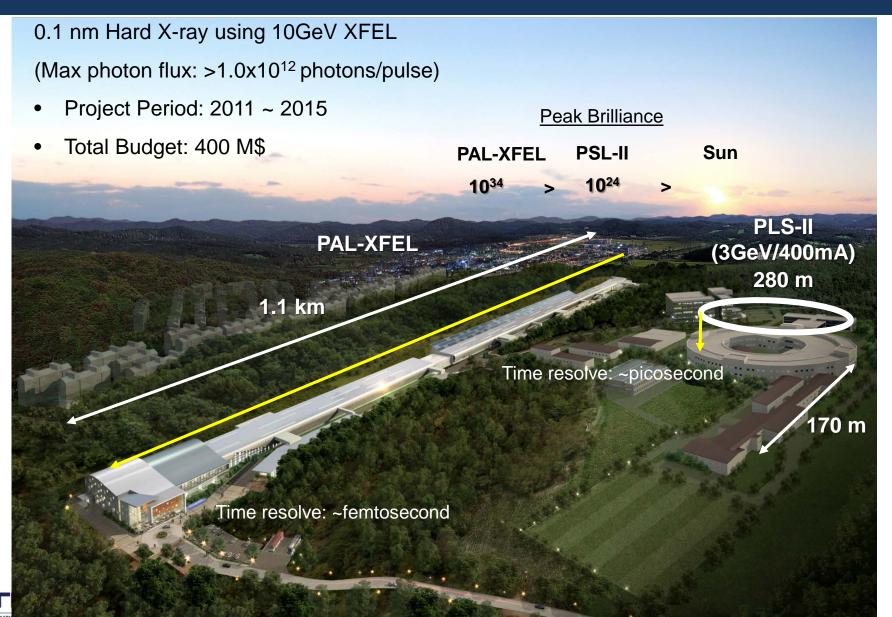
+ several smaller accelerator facilities (electron, proton, heavy ion)

Beam Parameters

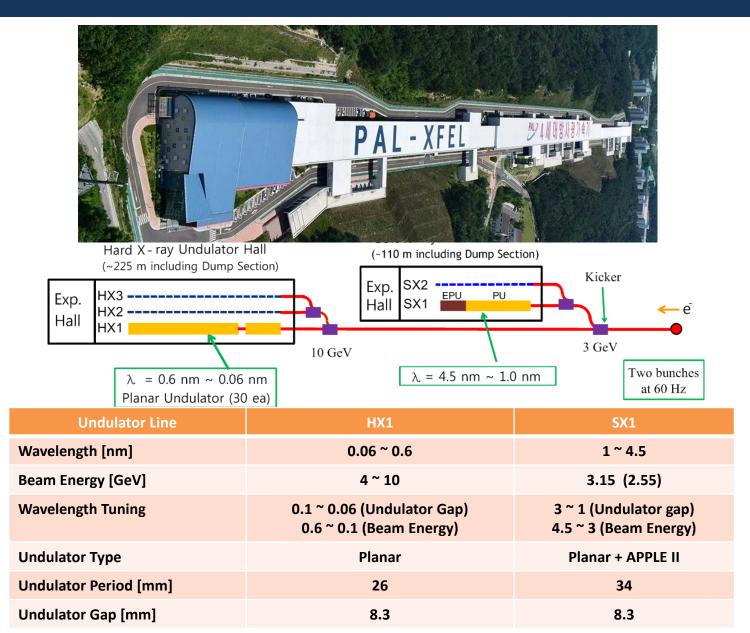
Parameter	PAL-XFEL	RISP
Species	Electron	Proton ~ Heavy ion
Energy	10 GeV	200 MeV/u for U ⁷⁹⁺
Beam current	3 kA (0.2 nC/100 fs)	8 pmA U ⁷⁹⁺
Rep. Rate	<120 Hz	CW
Linac Structure	3 Bunch Compressors 2.856 GHz (S-band)	SCRF: QWR (81.25 MHz), HWR (162.5 MHz), SSR (325 MHz)
Research Areas	Material science, Chemistry/Biology, Atomic/Molecular, Condensed matter, Surface/cluster, Non-equilibrium plasma, Warm-dense plasma	Nuclear physics, Nuclear Astrophysics, Bio-medical science, Material science, Neutron science

~ LCLS(SLAC)

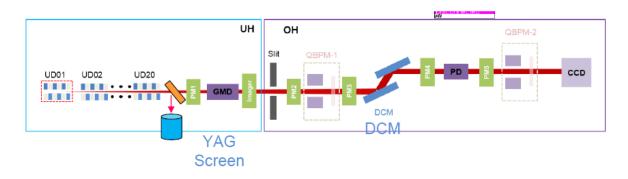
~ FRIB(MSU)



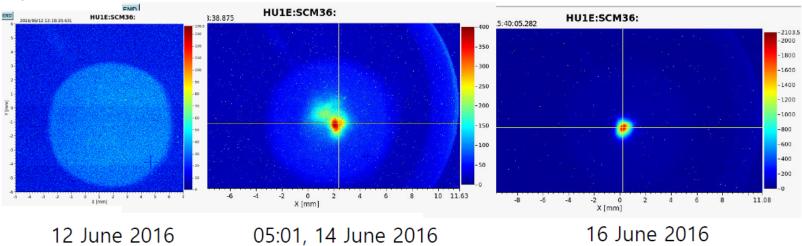
PAL-XFEL (Pohang Accelerator Lab.-XFEL)



Project Summary



Layout and Parameters



First Lasing at 0.5 nm on 14 June 2016

Spontaneous radiation

[From H. S. Kang]

photonics

Science

Hard X-ray free-electron laser with femtosecondscale timing jitter

Heung-Sik Kang^{1*}, Chang-Ki Min¹, Hoon Heo¹, Changbum Kim¹, Haeryong Yang¹, Gyujin Kim¹, Inhyuk Nam¹, Soung Youl Baek¹, Hyo-Jin Choi¹, Geonyeong Mun¹, Byoung Ryul Park¹, Young Jin Suh¹, Dong Cheol Shin¹, Jinyul Hu¹, Juho Hong¹, Seonghoon Jung¹, Sang-Hee Kim¹, KwangHoon Kim¹, Donghyun Na¹, Soung Soo Park¹, Yong Jung Park¹, Jang-Hui Han¹, Young Gyu Jung¹, Seong Hun Jeong¹, Hong Gi Lee¹, Sangbong Lee¹, Sojeong Lee¹, Woul-Woo Lee¹, Bonggi Oh¹, Hyung Suck Suh¹, Yong Woon Parc¹, Sung-Ju Park¹, Min Ho Kim¹, Nam-Suk Jung¹, Young-Chan Kim¹, Mong-Soo Lee¹, Bong-Ho Lee¹, Chi-Won Sung¹, Ik-Su Mok¹, Jung-Moo Yang¹, Chae-Soon Lee¹, Hocheol Shin¹, Ji Hwa Kim¹, Yongsam Kim¹, Jae Hyuk Lee¹, Sang-Youn Park¹, Jangwoo Kim¹, Jaeku Park¹, Intae Eom¹, Seungyu Rah¹, Sunam Kim¹, Ki Hyun Nam¹, Jaehyun Park¹, Jaehun Park¹, Sangsoo Kim¹, Soonam Kwon¹, Sang Han Park¹, Kyung Sook Kim¹, Hyojung Hyun¹, Seung Nam Kim¹, Seonghan Kim¹, Sun-min Hwang¹, Myong Jin Kim¹, Chae-yong Lim¹, Chung-Jong Yu¹, Bong-Soo Kim¹, Tai-Hee Kang¹, Kwang-Woo Kim¹, Seung-Hwan Kim¹, Hee-Seock Lee¹, Heung-Soo Lee¹, Ki-Hyeon Park¹, Tae-Yeong Koo¹, Dong-Eon Kim¹ and In Soo Ko²

The hard X-ray free-electron laser at the Pohang Accelerator Laboratory (PAL-XFEL) in the Republic of Korea achieved saturation of a 0.144 nm free-electron laser beam on 27 November 2016, making it the third hard X-ray free-electron laser in the world, following the demonstrations of the Linac Coherent Light Source (LCLS) and the SPring-8 A Angstrom Compact Free Electron Laser (SACLA). The use of electron-beam-based alignment incorporating undulator radiation spectrum analysis has allowed reliable operation of PAL-XFEL with unprecedented temporal stability and dispersion-free orbits. In particular, a timing jitter of just 2015 for the free-electron laser photon beam is consistently achieved due to the use of a state-of-the-art design of the electron linear accelerator and electron-beam-based alignment. The low timing jitter of the electron beam makes it possible to observe Bi(111) phonon dynamics without the need for timing-jitter correction, indicating that PAL-XFEL will be an extremely useful tool for hard X-ray time-resolved experiments.

(③) 中国药科大学生物制药学院诚聘:院长、终身教授

Home News Journals Topics Careers

SHARE REPORT

Maxima in the thermodynamic response and correlation functions of deeply supercooled water

Kyung Hwan Kim^{1,*}, Alexander Späh^{1,*}, Harshad Pathak¹, Fivos Perakis¹, Daniel Mariedahl¹, Katrin Amann-Winkel¹, Jonas A. Sellberg², Jae Hyuk Lee³, Sangsoo Kim³, Jaehyun Park³, Ki Hyun Nam³, Tetsuo Katayama⁴, Anders Nilsson^{1,†}

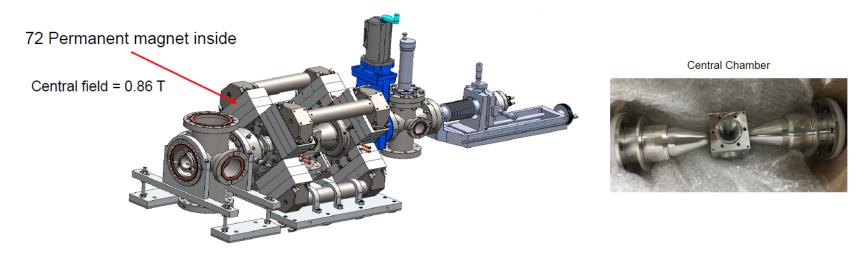
¹Department of Physics, AlbaNova University Center, Stockholm University, SE-10691 Stockholm, Sweden.

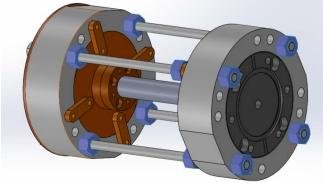
²Biomedical and X-Ray Physics, Department of Applied Physics, AlbaNova University Center, KTH Royal Institute of Technology, SE-10691 Stockholm, Sweden.

³Pohang Accelerator Laboratory, Pohang, Gyeongbuk 37673, Republic of Korea.

⁴Japan Synchrotron Radiation Research Institute, Kouto 1-1-1, Sayo, Hyogo 679-5198, Japan.

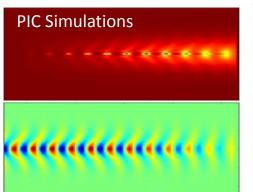
et* These authors contributed equally to this work. - Hide authors and affiliations


Science 22 Dec 2017: Vol. 358, Issue 6370, pp. 1589-1593 DOI: 10.1126/science.aap8269

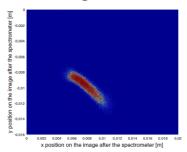

Log in | My account

UNIST Activities

• Development of electron beam ion trap (EBIT):



• Beam-driven plasma wakefield acceleration program:


Plasma source development

ILSAN NATIONAL INSTITUTE OF

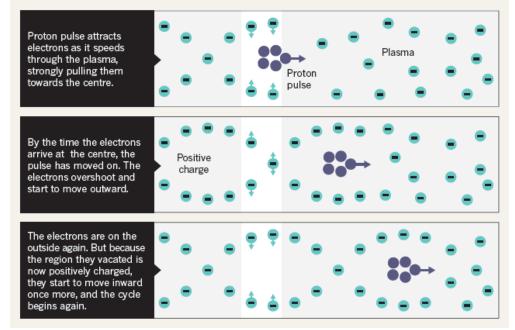
Modulated beam density profile and longitudinal wake-field $E_{\rm z}$

Beam manipulation /diagnostics

MAKING WAVES

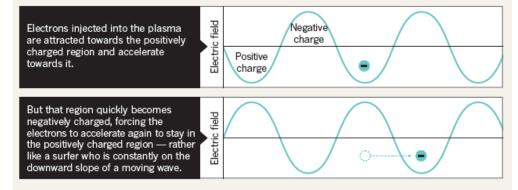
A pulse of protons injected into an ionized gas, or plasma, sets electrons bobbing in its wake, creating regions that constantly cycle between being positively and negatively charged.

OPEN https://doi.org/10.1038/s41586-018-0485-4


Acceleration of electrons in the plasma wakefield of a proton bunch

E. Adli¹, A. Ahuja², O. Apsimon^{3,4}, R. Apsimon^{4,5}, A. –M. Bachmann^{2,6,7}, D. Barrientos², F. Batsch^{2,6,7}, J. Bauche²,
V. K. Berglyd Olsen¹, M. Bernardini², T. Bohl², C. Bracco³, F. Braunmüller⁶, G. Burt^{4,5}, B. Buttenschön⁸, A. Caldwell⁶, M. Cascella⁹,
J. Chappell⁹, E. Chevalla⁹, M. Chung¹⁰, D. Cooke⁹, H. Damerau², L. Deacon⁹, L. H. Deubner¹¹, A. Dexter^{4,5}, S. Doebert²,
J. Farmer¹², V. N. Fedosseev², R. Fiorito^{4,13}, R. A. Fonseca¹⁴, F. Friebel⁷, L. Garolfi², S. Gessner², I. Gorgisyan², A. A. Corn^{15,16},
E. Granados², O. Grulke^{8,17}, E. Cschwendtner², J. Hansen², A. Helm¹⁸, J. R. Henderson^{4,5}, M. Hüther⁶, M. Ibison^{4,13}, L. Jensen²,
S. Jolly⁹, F. Keeble⁹, S. – Y. Kim¹⁰, F. Kraus¹¹, Y. Li^{3,4}, S. Liul⁶, N. Lopes¹⁸, K. V. Lotovl^{5,16}, L. Marciauly Brun², M. Martyanov⁶,
S. Mazzoni⁷, D. Medina Godoy², V. A. Minakovl^{5,16}, J. Mitchell^{4,5}, J. C. Molendijk², J. T. Moody⁶, M. Moreira^{2,18}, P. Muggl^{12,6},
E. Öz⁶, C. Pasquino⁵, A. Pardons², F. Peña Asmus^{6,7}, K. Pepitone², A. Perera^{4,13}, A. Petrenko^{2,15}, S. Pitman^{4,5}, A. Pukhov¹², S. Rey²,
K. Kieger⁶, H. Ruhl⁷⁰, J. S. Schmidt⁷, I. A. Shalimova^{16,71}, P. Sherwood⁹, L. O. Silva¹⁸, L. Soby⁴, A. P. Sosedkin^{15,16}, R. Speroni⁷,
M. Spitsym^{5,16}, P. V. Tuve^{15,16}, M. Turre⁷, F. Velotti², L. Verra^{2,27}, V. A. Verzilov¹⁹, J. Vieira¹⁸, C. P. Welsch^{4,13}, B. Williamson^{3,4},
M. Wing^{9*}, B. Woolley² & G. Xia^{3,4}

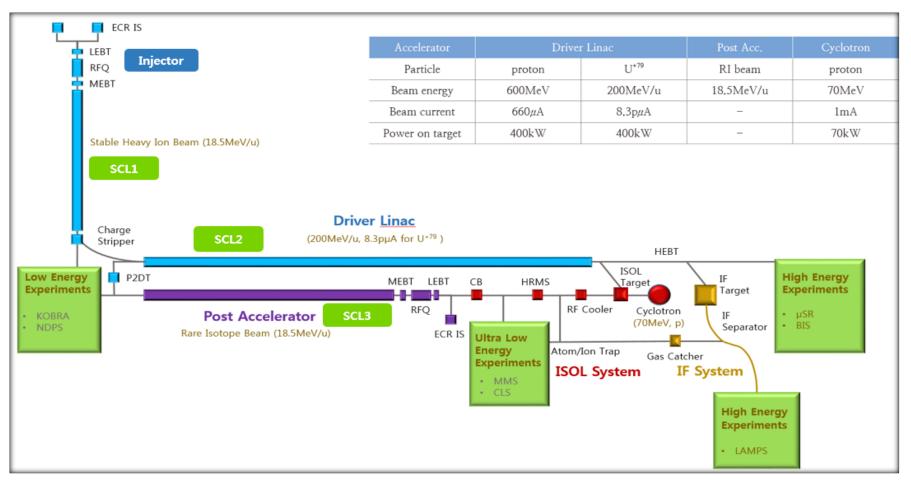
20 MeV \rightarrow 2 GeV in 10 m UNIST contribution = 2/93


$$\lambda_p = \frac{2\pi c}{\omega_p}, \quad \text{or} \quad \lambda_p \approx 0.1 \text{ mm} \sqrt{\frac{10^{17}}{n[\text{cm}^{-3}]}}$$

 $n pprox 10^{18} \, {
m cm}^{-3}$, which corresponds to $\lambda_p \, pprox 30 \, \mu{
m m}$ (or around 100 fs)

SURF'S UP

The cycling from positive to negative charge creates a wave of electron density that can be used to accelerate injected electrons.



RISP (Rare sotope Science Project)

Budget: US\$ 1.44 B (1 B\$~1T Won)

- accelerators and experimental apparatus : 0.46 B\$
- civil engineering & conventional facilities : 0.98 B\$ (incl. construction site purchase)

Period: 2011.12 ~ 2021.12 (10.1 years)

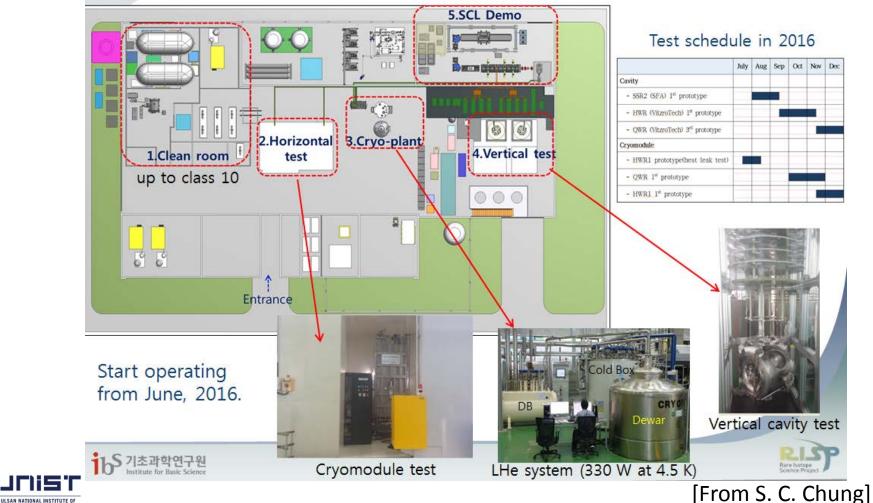
Construction Site

[From S. C. Chung]

시설건설 시공 현황(17.12)

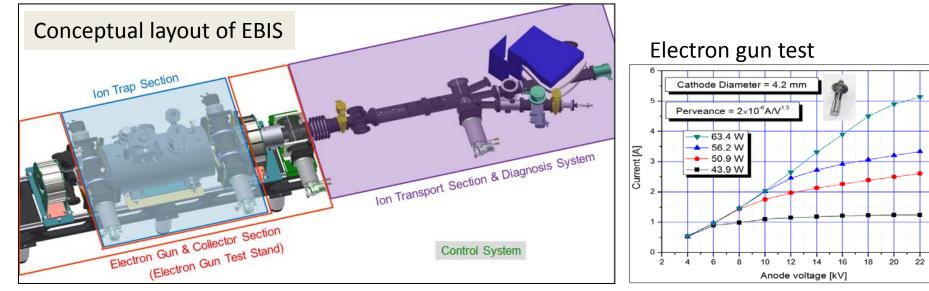
시설건설 시공 현황(18.5)

SRF Test Facility

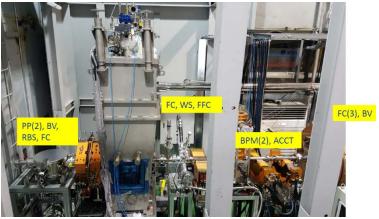

SRF Test Infrastructure (off-site test facility)

-RAON

Performance test of SC cavities and cryomodules


SCIENCE AND TECHNOLOGY

Quality control of SC cavities and CMs delivered by vendors in mass production



UNIST Activities

• Development of electron beam ion source (EBIS):

• Beam diagnostics/Beam loss monitoring:

ULSAN NATIONAL INSTITUTE OF

24

Design of Electron Beam Ion Source (EBIS) Charge Breeder for RAON Heavy Ion Accelerator

Hyock-Jun Son

Accepted in partial fulfillment of the requirements for the degree c Doctor of Philosophy

Nov 23, 2018

1

Thesis Advisor

Committee Member

Committee Member

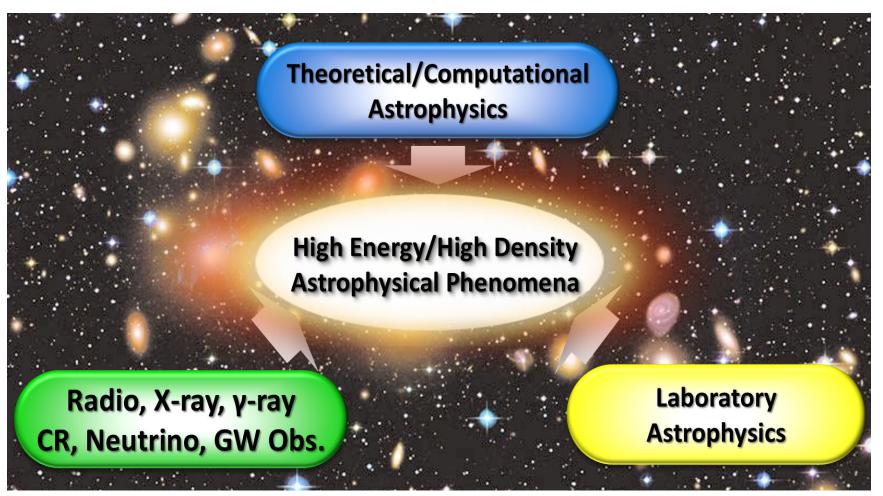
Committee Member

Committee Member

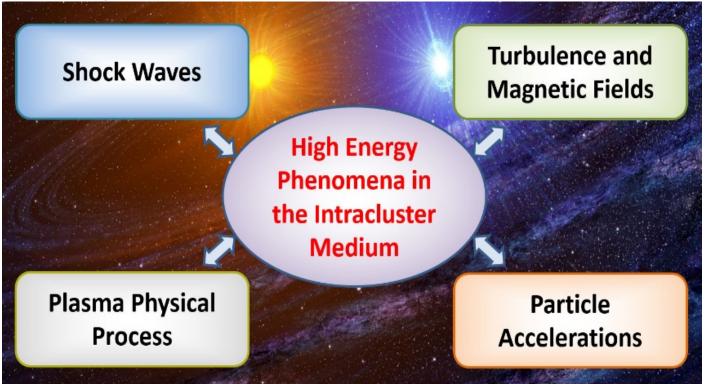
1 .
Am
Prof. Bongju Lee
Mong
Prof. Kyung Hee Hong
your Pant
Prof. Youngchun Park
Chur Mose 5
Prof. Moses Chung
BAZZ
Dr. Young-Ho Park

- This thesis was supported by the Ministry of Science, ICT, and Future Planning (MSIP) and the National Research Foundation (NRF) of the Republic of Korea (Contract 2011-0032011).
- This thesis was also partly supported by the National Research Foundation of Korea (Contract No. 2016R1A5A1013277).

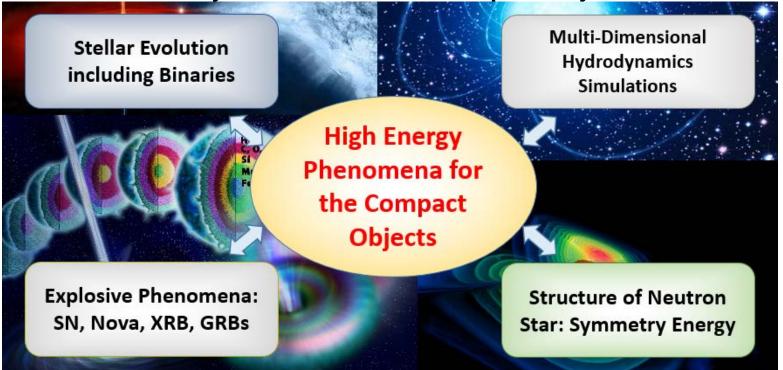
CHEA



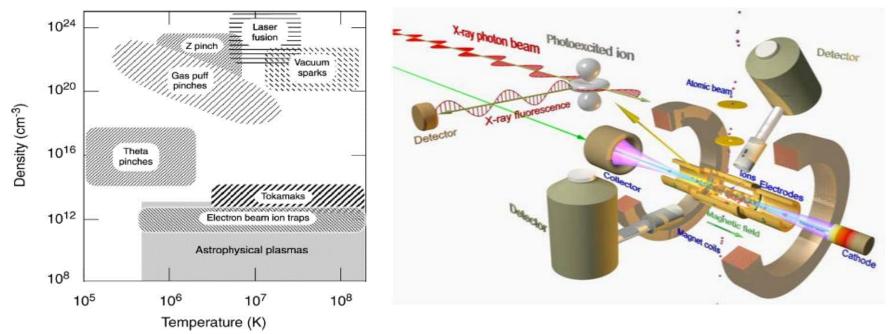
CHEA (Center for High Energy Astrophysics)


Goal of the Center's proposed research

Using intense ion and photon beams generated by largescale accelerator facilities in Korea

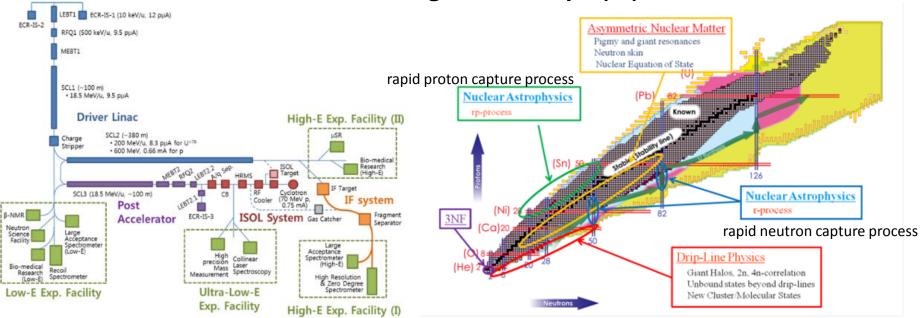

Theory and simulation of the Intracluster medium (ICM)

- The ICM is superheated plasmas with T ~ a few several keV, presented in clusters of galaxies.
- The so-called non-thermal components of the plasmas (magnetic fields, CRs and turbulence) are expected to play significant roles in the formation and observation of clusters, so our understanding of the universe.


Theory and simulation of Compact Objects

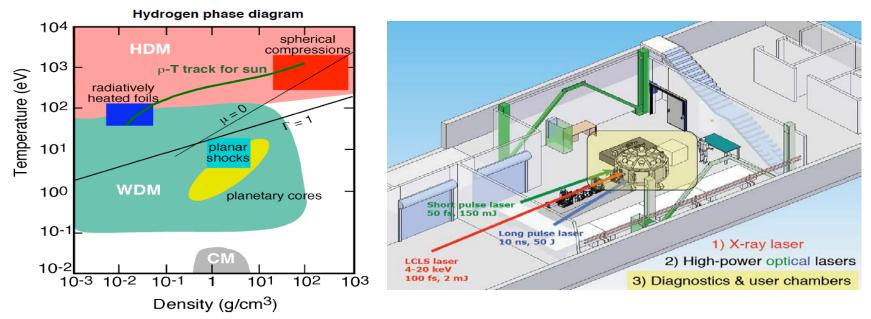
- Depending on its initial mass and detailed evolution history, a single star evolves to either white dwarf, neutron star, or black hole, which are named as compact objects collectively.
- Compact objects are at the center of numerous astrophysical phenomena that involve high energy and/or high density physics and nuclear physics.

X-ray Spectroscopy of Highly-Charged Ions (HCI)



- X-FEL's have expanded the use of laser spectroscopy technique into the X-ray domain.
- High-precision studies of the interactions between X-ray photons and highly-Charged Ions (HCI) created by EBIT are possible, including the investigation of the photoionization and photorecombination of the HCI.
- These processes determine radiation transport in stars and in the photo-ionized plasmas surrounding compact objects such as black holes and neutron stars.

More from Mr. Park and Mr. Yoo (UNIST)


Nuclear Astrophysics Using Rare Isotope (RI) Accelerator

- The primary purpose of rare isotope accelerator is to produce unstable nuclei which have more protons or neutrons than stable nuclei.
- These unstable nuclei are ubiquitous in numerous astrophysical phenomena, for example, stellar evolution of massive stars, explosion on the surface of compact stars, core-collapse and accretion-induced supernova.
- Production (ISOL/IF, Charge Breeding) and measurement (Recoil Spectrometer) of unstable nucleus require huge amounts of experimental resource and effort.

Pump-Probe Measurements of High Energy Density (HED) Matter

- High energy density (HED) matter is defined as having an energy density above 10¹¹ joules per cm³, which is equivalent to 100 GPa (1 Mbar) pressure and 500 T magnetic pressure.
- The XFEL can be used either as a pump or as a probe to study time- and spectrallyresolved properties of the HED.
- Hot Dense Matter (HDM) occurs in supernova, stellar interiors, and accretion disks, while Warm Dense Matter (WDM) occurs in cores of large planets.

붙임 1 천체물리학적으로 중요한 고전리 이온의 분광학적 특성 연구 RFP

		KFP 번호		1			
과제명	 천체물리학적으로 중, 분광학적 특성 연구 	요한 고전리 이	온의	보안등급	보안		
소요기간	○ 총 사업기간 : 3개년 (○ 당해연도 사업기간 : *19.	청부지원 연구비 9 억원 (당해연도) (3 억원)					
연구목표	O 3세대 및 4세대 방사광 가속가를 이용하여 천체물리학적으로 중요한 고전리 이온의 X-선 스펙트럼 및 진동자 세기 측정						
배경 (관련 동향)	 ○ 고전리 이온(Highly-Charged Ion, HCI)은 고온의 은하단뿐만 아니라. 별. 초신성, 성간물질을 구성하고 있는 천체물리학적으로 매우 중요 한 물질 상태임. ○ 최근에 우주로 쏘아 올려진 XMM-Newton (X-ray Multi-Mirror Mission)과 Chandra 등의 과학위성은 이러한 고전리 이온으로부터 나 오는 X-선 스펙트럼을 관측해서 천체의 신비를 연구하는 임무를 띠 고 있음. ○ X-선 스펙트럼에는 이온과 전자의 온도, 빌도 등에 관한 청보를 담 고 있다. 하지만, 지구상에서는 흔하지 않은 고온-고에너지 상태로 이온들이 존재하기 때문에, 통상적인 원자물리학으로는 관측된 스펙 트럼을 충분히 설명하기가 어렵다. 이러한 어려움 때문에, X-선 관측 데이터를 활용한 천체물리 현상의 해석이 명쾌히 이루어지지 못하고 있는 실청임. 						
연구개발 내용및범위	 고전리 이온 발생 장치의 구축 또는 도입 X-선 계측 시스템 구축 또는 도입 3세대 및 4세대 방사랑 가속가를 이용하여 천체물리학적으로 중요한 고전리 이온에 대한 X-선 스펙트럼 및 진동자 세기 측정 실험 수행 천문 관측 데이터 또는 사뮬레이션 결과와 비교 분석 						
연구팀 구성	- 학·연 연구진 역할(분 대학 : 사업총괄, 고전태 데이터 분석 연구소 : X-선 계측 시	4 · 박사 과정생 2인 이상) :담) 미 이온 발생 장 1	또는 텍 치의 구속 인 준비	축. 성능시험.	인력양성.		

분임 1 천체물리학적으로 중요한 고에너지밀도 플라즈마의 분광학적 특성 연구 FP

		К हुए भुट्रे.		1			
과제명	전체물리학적으로 중요 표리 지지와 보관하러		Ē	보안등급	보안		
	플라즈마의 분광학적 - ○ 초 :lod키카 : artiji /		처벌,기	원 연구비	 15억원		
소요기간	○ 총 사업기간 : 3개년 ("19-'21년) ○ 당해연도 사업기간 : "193-'202 (12개월)			해연도)	10 - 원 (5억원)		
연구목표	○ 극초단 초고휘도의 XFEL을 활용. 우주환경에서만 존재하는 플라즈파 상태를 지상에서 생성하고 진단하는 기술을 개발하여. 고에너지밀도 플 라즈마의 물성을 이해함.						
	○ 플라즈마는 우주의 항성. 성간매질. 거대행성 주변 등 다양한 환경에 존 재하며, 특히 많은 경우 별의 내부. 초신성 폭발 등 고온-고압의 고에너 지밀도 (>10 ¹¹ ∬m ⁹) 상태로 존재함.						
빠경							
(관련 동향)							
	〇 우리나라는 2016년 XFEL이 가동되기 사작하였으나 활용분야가 제한적 이며 천체물리학, 플라즈마 등의 연구에 적합한 장치 및 가술개발은 미 흡함.						
	 ○ XFBL를 활용한 고에너지밀도 플라즈마의 생성 및 진단 - 고휘도 XFBL을 이용한 고밀도 플라즈마의 생성 및 x-선 분광을 통한 						
	온도·밀도 측청 - 다양한 온도-밀도의 고밀도 광플라즈마의 천자구조 진단						
	- 고밀도 광플라즈마의 복사 및 불투명도에 대한 연구						
연구개발	○ 국소 열역학척 비평형 (non-LTE) 플라즈마 동역학						
내용 및	- XFBL을 활용한 non-LTB 플라츠마의 천자분포 측청						
범위	- 광여기된 non-LTE 플라즈마의 유체역학적 거동 진단						
	○ XPBL을 활용한 처온-고밀도 플라즈마의 물성진단 - 처온-고밀도 플라즈마에 대한 초고속 전자구조 측정						
	- 씨곤·고릴로 들려스마에 내한 조고곡 신사가조 목성 - 비명형 축퇴전자 거동에 대한 연구						
	- 고밀도 플라즈마의 열전도도에 대한 연구						
연구팀 구성	 이 대학 및 연구소 주관. 기속기 관련 연구소와 공동 연구팀 구성 · 연구팀 구성: 교수/선임급 연구원 3인 이상. 석·박사 과정생 또는 박사후 연구원 6인 이상 						

Thank you for your attention

