THE ASTROPHYSICAL JOURNAL, 850:71 (19pp), 2017 November 20 © 2017. The American Astronomical Society. All rights reserved.

https://doi.org/10.3847/1538-4357/aa9219

A Detailed Study of the Interstellar Protons toward the TeV γ -Ray SNR RX J0852.0–4622 (G266.2–1.2, Vela Jr.): The Third Case of the γ -Ray and ISM Spatial Correspondence

Y. Fukui^{1,2}, H. Sano^{1,2}, J. Sato², R. Okamoto², T. Fukuda², S. Yoshiike², K. Hayashi², K. Torii³, T. Hayakawa², G. Rowell⁴, M. D. Filipović⁵, N. Maxted⁶, N. M. McClure-Griffiths⁷, A. Kawamura⁸, H. Yamamoto², T. Okuda⁸, N. Mizuno⁸, K. Tachihara², T. Onishi⁹, A. Mizuno¹⁰, and H. Ogawa⁹

Soonyoung Roh

Cosmic-rays : charged and very energetic particles one of the primary components of high energy particles

Interstellar Component	Energy Density (eV cm ⁻³)
Cosmic Microwave Background (CMB)	0.265
Far-infrared radiation from dust	0.31
Starlight $(h\nu < 13.6 \text{ eV})$	0.54
Thermal kinematic energy $(3/2)nkT$	0.49
Turbulent kinematic energy $(1/2)\rho v^2$	0.22
Magnetic energy $B^2/8\pi$	0.89
Cosmic-rays	1.39

Energy Densities in the Local Interstellar Space

CRs affect eating and ionization of the interstellar medium (ISM). However, the <u>site of galactic cosmic-rays acceleration ($E < 3 \times 10^{15} \text{ eV}$) is</u> <u>still not clear.</u>

Supernova remnants (SNRs)

-The most likely candidates for the acceleration site below the Knee energy.

-Energy sources satisfactory explain the CR production rate in the Galaxy.

Kinetic Energy Budget:

-Collisionless shock waves are very powerful in the galactic sources satisfying the kinetic energy needed to explain the injection rate of the cosmic-rays.

Required injection rate of CRs (L_{CR})
$$L_{CR} = \frac{V \varepsilon_{CR}}{\tau_{esc}} \sim 10^{41} \text{ erg s}^{-1}$$

Total power of supernova explosion $P_{SNR} = \frac{E_{SN}}{f_{SN}} \sim 10^{42} \text{ erg s}^{-1}$
 $E_{SN}=10^{51} \text{ erg (typical supernova explosion energy)}$ $V = \pi R^2 h \sim 4 \times 10^{66} \text{ cm}^{-3}$
 $\varepsilon_{CR} = 1.39 \text{ eV cm}^{-3} = 2.2 \times 10^{-12} \text{ erg cm}^{-3}$
 $\tau_{esc} \sim 3 \times 10^6 \text{ yr}$

Cosmic-Ray Acceleration in Supernova Remnants

Supernova remnants (SNRs)

-The most likely candidates for the acceleration site below the Knee energy.

-Energy sources satisfactory explain the CR production rate in the Galaxy.

Kinetic Energy Budget:

-Collisionless shock waves are very powerful in the galactic sources satisfying the kinetic energy needed to explain the injection rate of the cosmic-rays.

Required injection rate of CRs (L_{CR})
$$L_{CR} = \frac{V \varepsilon_{CR}}{\tau_{esc}} \sim 10^{41} \text{ erg s}^{-1}$$

Total power of supernova explosion $P_{SNR} = \frac{E_{SN}}{f_{SN}} \sim 10^{42} \text{ erg s}^{-1}$

Therefore, if the galactic cosmic-rays are accelerated in SNRs, ~10% of each supernova energy is transferred to cosmic-rays.

Filled circles: observed points of GeV Squared: VHE (> 100 GeV) γ-rays Each dashed line: expected energy spectrum by the DSA model

In middle-aged SNRs, max energy of expected gamma-ray spectrum: < 10¹¹-10¹²eV young SNRs: < 10¹³-10¹⁴eV

The energy of cosmic-ray protons Ep is ~ 10 times higher than gamma-ray energy.

Young SNRs are the best target to observe for the understanding efficient acceleration of CR protons.