Korea Numerical Astrophysics Group meeting

July 3, 2015

Effects of multiple scale driving on turbulence statistics

Hyunju Yoo^{1,2}, Jungyeon Cho¹

¹Chungnam National University, ²Korea Astronomy and Space Science Institute

Introduction

* Astrophysical fluids

- Magnetized & Turbulent
 - (e.g Interstellar medium, intracluster medium, solar winds ..)
- \Rightarrow Numerical simulation of driven MHD turbulence

Introduction

- * Astrophysical fluids
 - Magnetized & Turbulent
 - (e.g Interstellar medium, intracluster medium, solar winds ..) \Rightarrow Numerical simulation of driven MHD turbulence
- * Energy cascade of turbulence
 - → Energy injection (driving) is required !

Introduction

*Variety of driving mechanisms on various scales

- Interstellar medium : few pc ~ hundreds of pc
- Intracluster medium : tens of kpc ~ hundreds of kpc

- * Incompressible/compressible MHD turbulence simulations
 - Pseudo-spectral code for incompressible MHD simulations
- Essentially Non-Oscillatory scheme for isothermal compressible MHD simulations
- Resolution : 256³ grids
- Average velocity $\sim O(1)$
- External magnetic field $B_0=0.001$ (weak) or 1.0 (strong) (in the same unit as the Alfven speed)

* Forcing

- Solenoidal forcing (divergence-free)
- Driven at two ranges in Fourier space
- large-scale random forcing in $2 < k < \sqrt{12}$
- small-scale random forcing in 15<k<26

* Spectrum of turbulence model driven at two different scales

Analytic expectation

* Expected scaling relations

According to Kolmogorov's theory (Kolmogorov 1941)

$$v = (\epsilon l)^{\frac{1}{3}} \& k \sim 1/l \implies \frac{v_L}{v_S} = \left(\frac{\epsilon_L}{\epsilon_S}\right)^{\frac{1}{3}} \left(\frac{l_L}{l_S}\right)^{\frac{1}{3}} = \left(\frac{\epsilon_L}{\epsilon_S}\right)^{\frac{1}{3}} \left(\frac{k_S}{k_L}\right)^{\frac{1}{3}}$$

An approximation,

$$v \approx \sqrt{kE(k)} \qquad \Longrightarrow \quad \frac{v_L}{v_S} \approx \frac{\sqrt{k_L E(k_L)}}{\sqrt{k_S E(k_S)}} = \left(\frac{\epsilon_L}{\epsilon_S}\right)^{\frac{1}{3}} \left(\frac{k_S}{k_L}\right)^{\frac{1}{3}}$$

 $\frac{E(k_L)}{E(k_S)} = \left(\frac{\epsilon_L}{\epsilon_S}\right)^{\frac{2}{3}} \left(\frac{k_S}{k_L}\right)^{\frac{5}{3}} \implies k_S / k_L = 8 \quad \text{for our simulations}$

$$\Rightarrow \quad \frac{E(k_L)}{E(k_S)} = 32\left(\frac{\epsilon_L}{\epsilon_S}\right)^{\frac{2}{3}}$$

* Single-scale driving

* Multiple-scale driving ($E_L \ll E_S$)

* Multiple-scale driving ($E_L \ll E_S$)

* Multiple-scale driving ($E_L \ll E_S$)

Result - Incompressible HD test

* Kinetic energy spectrum & Scaling relation

Result - Incompressible MHD w/ weak B0

* Kinetic and magnetic energy spectrum

Result - Incompressible MHD w/ strong B0

* Kinetic and magnetic energy spectrum

Result - Incompressible MHD w strong B0

ш

Result - Compressible MHD w/ strong B0

* Kinetic and magnetic energy spectrum

Result - Compressible MHD w/ strong B0

* Density spectrum

Result - Compressible MHD w/ strong B0

* Observational implication

- * Observable quantities - velocity centroids $VC = \int \rho v_y dy$
 - column density $\Sigma = \int \rho dy$
 - rotation measure

$$\mathbf{R}\mathbf{M} = \int \rho B_y dy$$

Discussion

* Magnetic field-line divergence

* Turbulence diffusion

Large-scale driving

Turbulence diffusion by large-scale motion will dominate when $(1)^4$

$$\frac{\varepsilon_L}{\varepsilon_S} \ge \left(\frac{l_S}{l_L}\right)^2$$

Small-scale driving

In our cases, $\varepsilon_L / \varepsilon_S \ge 0.0002$

Discussion

* Turbulence dynamo

Discussion

* Turbulence dynamo

Large-scale driving

magnetic energy density amplification rate by large-scale driving

 $\sim C v_L b_L^2 / l_L$

C: a small number

Small-scale driving

In our cases, $\varepsilon_L / \varepsilon_S \ge 0.0002 C^{-3}$ destroy rate of large-scale magnetic energy density by small-scale driving

 $\sim (l_{S}v_{S})b_{L}^{2}/l_{L}^{2}$

large-scale magnetic field density will grow

if
$$\frac{\upsilon_L}{\upsilon_S} \ge \frac{l_S}{l_L} C^{-1}$$
 or $\frac{\varepsilon_L}{\varepsilon_S} \ge \left(\frac{l_S}{l_L}\right)^4 C^{-3}$

Conclusion

- * Astrophysical turbulence have many kinds of driving mechanisms on various scales
- * We perform incompressible/compressible MHD turbulence simulation with two-scale driving
- * We derived analytically expected relation assuming that there are two peaks in spectrum.
- * In small-scale driving dominant system, we are able to distinguish peaks in large- and small-scale, even ϵ_L is much smaller than ϵ_S .
- * Two-scale driving affect several physical properties such as magnetic field-line divergence, turbulence diffusion, turbulence dynamo.

(Yoo & Cho 2014, ApJ, 178,99 in detail)

* We are currently performing data sets for investigating effect of two scale driving in the system with high Mach number (Ms = v/c_s ≥ 1)

Thank you:)