Non-equilibrium Chemistry with the FLASH Code

Kyujin Kwak

Ulsan National Institute of Science and Technology (UNIST) KNAG meeting May 29, 2015 @KASI

Non-Equilibrium Ionization Calculation with FLASH

$$\begin{aligned} \frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \mathbf{v}) &= 0 \\ \frac{\partial \rho \mathbf{v}}{\partial t} + \nabla \cdot (\rho \mathbf{v} \mathbf{v}) + \nabla P &= \rho \mathbf{g} \\ \frac{\partial \rho E}{\partial t} + \nabla \cdot [(\rho E + P) \mathbf{v}] &= \rho \mathbf{v} \cdot \mathbf{g} \ [+S] \\ \frac{\partial n_i^Z}{\partial t} + \nabla \cdot n_i^Z \mathbf{v} &= R_i^Z \ (i = 1, \dots, N_{spec}) , \end{aligned}$$

$$R_i^Z = N_e [n_{i+1}^Z \alpha_{i+1}^Z + n_{i-1}^Z S_{i-1}^Z - n_i^Z (\alpha_i^Z + S_i^Z)] ,$$

doi:10.1088/0004-637X/718/1/417

© 2010. The American Astronomical Society. All rights reserved. Printed in the U.S.A.

THE ASTROPHYSICAL JOURNAL, 718:417–432, 2010 July 20

FORMATION OF COMPACT STELLAR CLUSTERS BY HIGH-REDSHIFT GALAXY OUTFLOWS. I. NON-EQUILIBRIUM COOLANT FORMATION

WILLIAM J. GRAY AND EVAN SCANNAPIECO School of Earth and Space Exploration, Arizona State University, P.O. Box 871404, Tempe, AZ 85287-1404, USA Received 2010 February 24; accepted 2010 May 26; published 2010 June 30

ABSTRACT

We use high-resolution three-dimensional adaptive mesh refinement simulations to investigate the interaction of high-redshift galaxy outflows with low-mass virialized clouds of primordial composition. While atomic cooling allows star formation in objects with virial temperatures above 10^4 K, "minihalos" below this threshold are generally unable to form stars by themselves. However, these objects are highly susceptible to triggered star formation, induced by outflows from neighboring high-redshift starburst galaxies. Here, we conduct a study of these interactions, focusing on cooling through non-equilibrium molecular hydrogen (H₂) and hydrogen deuteride (HD) formation. Tracking the non-equilibrium chemistry and cooling of 14 species and including the presence of a dissociating background, we show that shock interactions can transform minihalos into extremely compact clusters of coeval stars. Furthermore, these clusters are all less than $\approx 10^6 M_{\odot}$, and they are ejected from their parent dark matter halos: properties that are remarkably similar to those of the old population of globular clusters.

Key words: astrochemistry – galaxies: formation – galaxies: high-redshift – galaxies: star clusters: general – globular clusters: general – shock waves

Online-only material: color figures

Reactors and Reaction Networks

- Atomic hydrogen (H, H⁺, H⁻) : A=1
- Atomic deuterium (D, D⁺, D⁻) : A=2
- Atomic helium (He, He⁺, He⁺⁺) : A=4
- Molecular hydrogen (only two states: H₂, H₂⁺) : A=2
- Molecular hydrogen deuteride (only two states: HD, HD⁺): A=3
- Total 13 species + electrons
- 84 reactions
- From Glover & Abel 2008

Reaction Calculation

$$X_i \equiv \rho_i / \rho = n_i A_i / (\rho N_A), \quad N_A = \frac{1}{m_A}$$
 (1)

$$Y_i \equiv X_i / A_i = n_i / (\rho N_A), \qquad (2)$$

$$\dot{Y}_i \equiv \frac{dY_i}{dt} = \dot{R}_i, \qquad (3)$$

$$i + j \rightarrow k + l,$$

$$\dot{R}_{i} \equiv \sum_{j,k} Y_{l} Y_{k} \lambda_{kj}(l) - Y_{i} Y_{j} \lambda_{jk}(i), \qquad (4)$$

Reaction Calculation (Cont'd)

$$\dot{R}_{i} \equiv \sum_{j,k} Y_{l} Y_{k} \lambda_{kj}(l) - Y_{i} Y_{j} \lambda_{jk}(i) - Y_{i} J(\nu_{\alpha}), \qquad (5)$$

the background radiation, $J(\nu_{\alpha})$.

 $Y_{\text{elec}} = Y_{\text{H}^+} + Y_{\text{D}^+} + Y_{\text{HD}^+} + Y_{\text{H2}^+} + Y_{\text{He}^+} + 2Y_{\text{He}^{++}} - Y_{\text{H}^-} - Y_{\text{D}^-}.$ (6)

Non-Equilibrium Ionization Calculation with FLASH

$$\begin{aligned} \frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \mathbf{v}) &= 0 \\ \frac{\partial \rho \mathbf{v}}{\partial t} + \nabla \cdot (\rho \mathbf{v} \mathbf{v}) + \nabla P &= \rho \mathbf{g} \\ \frac{\partial \rho E}{\partial t} + \nabla \cdot [(\rho E + P) \mathbf{v}] &= \rho \mathbf{v} \cdot \mathbf{g} \ [+S] \\ \frac{\partial n_i^Z}{\partial t} + \nabla \cdot n_i^Z \mathbf{v} &= R_i^Z \ (i = 1, \dots, N_{spec}) , \end{aligned}$$

$$R_i^Z = N_e [n_{i+1}^Z \alpha_{i+1}^Z + n_{i-1}^Z S_{i-1}^Z - n_i^Z (\alpha_i^Z + S_i^Z)] ,$$

Reaction Calculation (Cont'd)

 $Y_i = \frac{dY_i}{dt} = R_i = f_i(Y_i)$ Implicit method (backward calculation) $\frac{Y_{\tilde{t}}^{n+1}-Y_{\tilde{t}}}{\Delta t} = f_{\tilde{t}}(Y_{\tilde{t}}^{n+1})$ $Y_{c} \Subset \vec{Y} = \begin{pmatrix} Y_{1} \\ Y_{2} \\ \vdots \end{pmatrix} \Longrightarrow \vec{Y}^{n+1} - \vec{Y}^{n} = \Delta t \vec{J} \vec{Y}^{n+1}$ $(\vec{J}) = \frac{\partial f_{c}}{\partial f_{j}} = \frac{\partial f_{c}}{\partial Y_{j}^{n}} \quad \partial f_{c}$ \Rightarrow $(1 - \Delta t \tilde{J}) Y^{nt} = \tilde{Y}^{n}$ =) $Y^{n+1} = (1 - \Delta t \tilde{J}) \tilde{Y}^n$

Reaction Calculation (Cont'd)

$$\mathbf{Y}^{n+1} = \mathbf{Y}^n + \sum_{i=1}^4 b_i \boldsymbol{\Delta}_i, \qquad (7)$$

$$(\hat{1}/\gamma h - \bar{J}) \cdot \boldsymbol{\Delta}_1 = f(\mathbf{Y}^n), \tag{8}$$

$$(\hat{1}/\gamma h - \bar{J}) \cdot \boldsymbol{\Delta}_2 = f(\mathbf{Y}^n + a_{21}\boldsymbol{\Delta}_1) + c_{21}\boldsymbol{\Delta}_1/h, \qquad (9)$$

$$(\hat{1}/\gamma h - \bar{J}) \cdot \Delta_3 = f(\mathbf{Y}^n + a_{31}\Delta_1 + a_{32}\Delta_2) + (c_{31}\Delta_1 + c_{32}\Delta_2)/h,$$
(10)

$$(\hat{1}/\gamma h - \bar{J}) \cdot \boldsymbol{\Delta}_4 = f(\mathbf{Y}^n + a_{41}\boldsymbol{\Delta}_1 + a_{42}\boldsymbol{\Delta}_2 + a_{43}\boldsymbol{\Delta}_3) + (c_{41}\boldsymbol{\Delta}_1 + c_{42}\boldsymbol{\Delta}_2 + c_{43}\boldsymbol{\Delta}_3)/h. \quad (11)$$

Cooling

• Cooling by molecular hydrogen (T < 10⁴ K)

 $H_2 + D^+ \rightarrow HD + H^+$ exothermic, and $HD + H^+ \rightarrow H_2 + D^+$. endothermic

• Cooling by atomic line emission (T > 10^4 K)

Time Step Control

$$\tau_{\text{chem},i} = \alpha_{\text{chem}} \frac{Y_i + 0.1 Y_{H^+}}{\dot{Y}_i},$$

$$\tau_{\rm cool} = \frac{\alpha_{\rm cool} \times E_i}{\dot{s}},$$

(12)

Time Step Control

Code Test: Chemical Evolution

Code Test: Cooling

Figure 5. Cooling tests. The solid lines are taken from Prieto et al. (2009) and compared to our model. The blue curves correspond to a number density $n = 1.0 \text{ cm}^{-3}$, red to $n = 10.0 \text{ cm}^{-3}$, and green to $n = 100.0 \text{ cm}^{-3}$. The temperature is not allowed to go below 50 K.

Model Simulations

Table 2				
Summary of the Numerical Simulations in This Study				

Name	l _{ref}	Resolution (pc)	Cooling Mode	Background (J_{21})
HBN	6	4.55	Case B	0
LBN	5	9.11	Case B	0
HBY	6	4.55	Case B	10^{-1}
LBY	5	9.11	Case B	10^{-1}
HAN	6	4.55	Case A	0
LAN	5	9.11	Case A	0

Results: Reference Run

Results: Reference Run

4.5

5.7

6.8

8.0

2.2

3.3

Results: Effect of Optical Depth

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 kpc

6.6277285 Myrs

0.8

kpc

1.0

1.2

1.4

0.1

-0.

-0.2

0.0

0.2

0.4

0.6

ů 0.0

-6.8 -5.7 -3.3 -2.2 -3.3 -6.8 -4.5 -3.3 -8.0 -4.5 -1.0 -8.0 -6.8 -5.7 -4.5 -2.2 -1.0 -5.7 -8.0

11.860187 Myrs

Effect of Background Radiation

Effect of Simulation Resolution

Formation of Stellar Cluster

