MHD Turbulence in Expanding and Contracting Media

Junseong Park¹, Dongsu Ryu¹, and Jungyeon Cho² ¹Dept. of Physics, Ulsan National Institute of Science and Technolog. Ulsan, Korea ²Dept. of Astronomy and Space Science, Chungnam National Univ. Daejeon, Korea

2015 KNAG meeting KASI, Daejeon, Korea 2015-03-27

Purpose of Study

1. We investigated MHD turbulence by including the effects of expansion and contraction of background medium.

- 2. The main goal is to quantify the evolution and saturation of strength and characteristic lengths of magnetic fields in expanding and contracting media.
- 3. We examine the properties of turbulence in a regime of $t_{eddy} < t_{exp-cntr}$ and $t_{eddy} > t_{exp-cntr}$. Based on it, we derive a scaling for the time evolution of flow velocity and magnetic field.

Contents

- Introduction
 - Fluid in expanding/contracting coordinate
- The MHD equations in expanding/contracting media
- Simulation –initial condition
- Simulation results
 - Test simulation
 - Decaying turbulence
 - : Scaling of velocity and magnetic field in decaying turbulence.
 - : Energy spectrum
- Conclusion

Fluid in expanding/contracting coordinate

• When the matter expand, the magnetic field in the matter is expand with comoving coordinate system.

The MHD equation in expanding/contracting media

 $\mathbf{v}' = \sqrt{\rho}\mathbf{v} = \mathbf{v}/(a\sqrt{a})$ is included density in peculiar velocity and **B** is magnetic field, *p*' is the pressure, $\mathbf{J} = \nabla \times \mathbf{B}$ is the current, *v* is the viscosity, η is the magnetic diffusion. Where *f* is a random driving force.

$$\frac{\partial \mathbf{v}'}{\partial t} = \sqrt{a}\mathbf{v}' \times (\nabla \times \mathbf{v}') - \frac{5}{2}\frac{\dot{a}}{a}\mathbf{v}' + \sqrt{a}\mathbf{J} \times \mathbf{B} + \frac{1}{a^2}\nu\nabla^2\mathbf{v}' + \nabla P' + f$$
$$\frac{\partial \mathbf{B}}{\partial t} = \sqrt{a}\nabla \times (\mathbf{v}' \times \mathbf{B}) - 2\frac{\dot{a}}{a}\mathbf{B} + \frac{1}{a^2}\nu\nabla^2\mathbf{B}$$

 $a(t) = \left(1 + \frac{t}{t_{exp-cntr}}\right)^{a_p}$ Scale factor with $a_p = 1$ for expand, $a_p = -1$ for contract Contracting media $a(t) = t_{cntr}/(t + t_{cntr})$ $\dot{a}(t) = -t_{cntr}/(t + t_{cntr})^2$ $\dot{a}/a = -1/(t + t_{cntr})^2$ $\dot{a}/a = 1/(t + t_{exp})$

When $t_{exp-cntr}$ is smaller, the expanding and contracting rate increase.

Simulation –initial condition

- □ Resolution : 128³, 256³ grid (periodic box size = 2π)
- □ Incompressibility is assumed.
- Have considered only case of $\nu = \mu$
- Have considered hyperviscosity, hyperdiffusion
- □ At t=0, Mean magnetic field strength is $B_0 = 0.00001$
- □ Have simulated using $t_{exp} = 1,500$ $t_{cntr} = 0.1,10$

Resolution	Condiction	$t_{\rm exp-cntr}$	Strength of mean B_0 field
	expand	1,500	
$128^3, 256^3$	contract	0.1, 10	0.00001
	not expand/contract	∞	

Table 1: Simulation conditions in the case of decaying turbulence

The incompressible MHD turbulence without expanding/contracting effect

After that the turbulence has reached a stationary state, we turn off the random driving forces.

From this point (t=60), we let the turbulence decay and inject the effect of the expansion/contraction.

Scaling of velocity and magnetic field

• Three time scales ($t_{eddy} \sim t_{char}$, $t_{exp-cntr}$)

Decay effect

$$\mathbf{v} = \mathbf{v}_0 \left(1 + \frac{t}{t_{char}}\right)^{-\eta}$$
, $\mathbf{b} = \mathbf{b}_0 \left(1 + \frac{t}{t_{char}}\right)^{-\eta}$

where t_{char} is the characteristic time of decay ($t_{char} \sim t_{eddy}$) $\eta = 0.5$ for decaying MHD turbulence ($t \gg t_{char}$) (Biskamp & Müller 1999)

Expansion/Contraction effects

$$\mathbf{v} = \mathbf{v}_0 / a, \, \mathbf{v}' = \sqrt{\rho} \mathbf{v} = \frac{\mathbf{v}}{a\sqrt{a}} = \frac{\mathbf{v}_0}{a^2 \sqrt{a}}$$
$$\mathbf{b} = \mathbf{b}_0 / a^2$$
$$\frac{\partial \mathbf{v}'}{\partial t} = \sqrt{a} \mathbf{v}' \times (\nabla \times \mathbf{v}') - \frac{5}{2} \frac{\dot{a}}{a} \mathbf{v}' + \sqrt{a} \mathbf{J} \times \mathbf{B} + \frac{1}{a^2} \nu \nabla^2 \mathbf{v}' + \nabla P' + f$$
$$\frac{\partial \mathbf{B}}{\partial t} = \sqrt{a} \nabla \times (\mathbf{v}' \times \mathbf{B}) - 2 \frac{\dot{a}}{a} \mathbf{B} + \frac{1}{a^2} \nu \nabla^2 \mathbf{B}$$

Scaling of velocity and magnetic field

• Three time scales $(t_{eddy} \sim t_{char}, t_{exp-cntr})$

Decay effect

$$\mathbf{v} = \mathbf{v}_0 \left(1 + \frac{t}{t_{char}}\right)^{-\eta}$$
, $\mathbf{b} = \mathbf{b}_0 \left(1 + \frac{t}{t_{char}}\right)^{-\eta}$

Expansion/Contraction effects

$$v = v_0/a, v' = \sqrt{\rho}v = \frac{v}{a\sqrt{a}} = \frac{v_0}{a^2\sqrt{a}}$$

 $b = b_0/a^2$

where t_{char} is the characteristic time of decay $(t_{char} \sim t_{eddy})$ $\eta = 0.5$ for decaying MHD turbulence $(t \gg t_{char})$ (Biskamp & Müller 1999)

Decay + Expansion/Contraction effects

• Contracting media

$$\frac{d\mathbf{v}'}{da} = -\left(\frac{5}{2} - \eta \frac{t + t_{\text{cntr}}}{t + t_{\text{char}}}\right) \frac{\mathbf{v}'}{a}, \qquad \frac{d\mathbf{b}}{da} = -\left(2 - \eta \frac{t + t_{\text{cntr}}}{t + t_{\text{char}}}\right) \frac{b}{a}$$

$$a = \left(1 + \frac{t}{t_{\rm cntr}}\right)^{-1} \propto 1/t$$

- t_{eddy} decreases with the scale factor evolution. $t_{eddy} = aL_0/(\rho v^2 + b^2)^{1/2}$
- t_{cntr} is smaller, the contracting rate increase.

Contracting media

$$\frac{d\mathbf{v}'}{da} = -\left(\frac{5}{2} - \eta \frac{t + t_{\text{cntr}}}{t + t_{\text{char}}}\right) \frac{\mathbf{v}'}{a}, \qquad \frac{d\mathbf{b}}{da} = -\left(2 - \eta \frac{t + t_{\text{cntr}}}{t + t_{\text{char}}}\right) \frac{b}{a}$$

Expanding media

$$\frac{d\mathbf{v}'}{da} = -\left(\frac{5}{2} + \eta \frac{t + t_{\exp}}{t + t_{char}}\right) \frac{\mathbf{v}'}{a}, \qquad \frac{d\mathbf{b}}{da} = -\left(2 + \eta \frac{t + t_{\exp}}{t + t_{char}}\right) \frac{b}{a}$$

$$a = \left(1 + \frac{t}{t_{\exp}}\right)^1 \propto t$$

- t_{eddy} increases with the scale factor evolution. $t_{eddy} = aL_0/(\rho v^2 + b^2)^{1/2}$
- t_{exp} is smaller, the expanding rate increase.

Expanding media

$$\frac{d\mathbf{v}'}{da} = -\left(\frac{5}{2} + \eta \, \frac{t + t_{\exp}}{t + t_{\operatorname{char}}}\right) \frac{\mathbf{v}'}{a}, \qquad \frac{d\mathbf{b}}{da} = -\left(2 + \eta \, \frac{t + t_{\exp}}{t + t_{\operatorname{char}}}\right) \frac{b}{a}$$

Turbulence dominated ($t_{eddy} \sim t_{char} \sim t \sim t_{exp}$)

$$\longrightarrow \frac{dv'}{da} = -\left(\frac{5}{2} + \eta\right)\frac{v'}{a}, \frac{db}{da} = -(2 + \eta)\frac{b}{a}$$

where $\eta = 0.5$ for decaying MHD turbulence (Biskamp & Müller 1999)

Expanding dominated $(t_{exp} < t < t_{eddy} t_{char})$ $\implies \frac{dv'}{da} = -\frac{5}{2} \frac{v'}{a}, \quad \frac{db}{da} = -2 \frac{b}{a}$

(Robertson & Goldreich 2012)

Energy spectrum (Turbulence dominated)

Total energy spectrum

Residual energy spectrum

- Spectrum was obtained by averaging with decaying dominant period.
 Left and right panels were compensated by k^{5/3} and k^{7/3}, respectively.
- Regardless of the expansion and contraction effects, the total and residual energy spectrum follow the $E_k^{\rm T} \sim k^{-5/3}$ and $E_k^{\rm R} \sim k^{-7/3}$ (Müller 2005) in the inertial range.

Energy spectrum (Expanding/Contracting dominated)

- The dissipation range moves toward larger wave number in contracting media smaller wave number in expanding media
- Energy spectrum follows the $E_k^K \sim a^{-5}$, $E_k^M \sim a^{-4}$. Because the scale factor dose not depend on wavenumber

Conclusion

- We performed a preliminary study of incompressible MHD decaying turbulence by including the effect of expansion and contraction.
- Scaling of velocity and magnetic field and Spectrum in expanding/contracting media
 expansion /contraction dominated

 $\sqrt{\rho}v \sim a^{-2.5}$, b $\sim a^{-2}$ (Robertson & Goldreich 2012)

- turbulence dominated $\sqrt{\rho}v \sim a^{-2.5-\eta}$, $b \sim a^{-2-\eta}$ in expanding media $\sqrt{\rho}v \sim a^{-2.5+\eta}$, $b \sim a^{-2+\eta}$ in contracting media where $\eta = 0.5$ for decaying MHD turbulence (Biskamp & Müller 1999)

the total and residual energy spectra follow the $E_k^{\rm T} \sim k^{-5/3}$ and $E_k^{\rm R} \sim k^{-7/3}$ (Müller 2005) in the inertial range.

• The specific results would depend on t_{eddy} and $t_{exp-cntr}$. We will explore those in future.

The MHD equations in expanding/contracting media

$$\left(\frac{\partial \mathbf{u}}{\partial t}\right)_{\mathbf{r}} + (\mathbf{u} \cdot \nabla_{\mathbf{r}})\mathbf{u} = -\frac{1}{\rho} \nabla_{\mathbf{r}} p - \nabla_{\mathbf{r}} \Phi + \frac{1}{\rho} \mathbf{J} \times \mathbf{B} + \nu \nabla_{\mathbf{r}}^{2} \mathbf{u}$$

$$\mathbf{u} = \dot{a}\mathbf{x} + \mathbf{v}(\mathbf{x}, t) = (\dot{a}/a)\mathbf{r} + \frac{1}{\sqrt{\rho}}\mathbf{v}'(\mathbf{r}/a, t) \quad \text{On changing variables from } \mathbf{r} \text{ to } \mathbf{x} = \mathbf{r}/a$$
$$\nabla_r \Rightarrow \frac{1}{a}\nabla \quad , \quad \phi = \Phi + \frac{1}{2}a\ddot{a}x^2$$

Left-hand

Left-hand side
$$\ddot{a}x + \frac{1}{\sqrt{\rho}}\frac{\partial v'}{\partial t} + \frac{1}{\sqrt{\rho}}\frac{\dot{a}}{a}v' + \frac{1}{a\rho}(v\cdot\nabla)v' + \frac{3}{2}\frac{v'}{\sqrt{\rho}}\frac{\dot{a}}{a}$$

Right-hand side $\frac{1}{\rho a}\nabla P - \frac{1}{a}\nabla\phi + \ddot{a}x + \frac{1}{\rho a}J \times B + \frac{1}{a^2\sqrt{\rho}}v\nabla^2 v'$

MHD equations in expanding/contracting coordinate

$$\frac{\partial \mathbf{v}'}{\partial t} = \sqrt{a}\mathbf{v}' \times (\nabla \times \mathbf{v}') - \frac{5}{2}\frac{\dot{a}}{a}\mathbf{v}' + \sqrt{a}\mathbf{J} \times \mathbf{B} + \frac{1}{a^2}\nu\nabla^2\mathbf{v}' + \nabla\rho' + f$$

The MHD equations in expanding/contracting media

$$\left(\frac{\partial \mathbf{B}}{\partial t}\right)_{\mathbf{r}} = \nabla_{\mathbf{r}} \times \left(\mathbf{u} \times \mathbf{B}\right) + \eta \nabla_{\mathbf{r}}^{2} \mathbf{B}$$

 $\mathbf{u} = \dot{a}\mathbf{x} + \mathbf{v}(\mathbf{x}, t) = (\dot{a}/a)\mathbf{r} + \frac{1}{\sqrt{\rho}}\mathbf{v}'(\mathbf{r}/a, t) \quad \text{On changing variables from } \mathbf{r} \text{ to } \mathbf{x} = \mathbf{r}/a$ $\nabla_r \Rightarrow \frac{1}{a}\nabla$

Rule of *Multiplication* $\nabla \times (A \times B) = (B \cdot \nabla)A - (A \cdot \nabla)B + A(\nabla \cdot B) - B(\nabla \cdot A)$

$$\frac{\partial B}{\partial t} = (B \cdot \nabla_r) u - (u \cdot \nabla_r) B + u(\nabla_r \cdot B) - B(\nabla_r \cdot u) + \eta \nabla_r^2 B$$
$$= \frac{1}{a\sqrt{\rho}} (B \cdot \nabla) v' - \frac{\dot{a}}{a} B - \frac{1}{a\sqrt{\rho}} (v' \cdot \nabla) B + \frac{1}{a\sqrt{\rho}} v' (\nabla \cdot B) - B \frac{\dot{a}}{a} - \frac{1}{a\sqrt{\rho}} (\nabla \cdot v') B + \frac{1}{a^2} \eta \nabla^2 B$$

Magnetic field equations in expanding/contracting coordinate

$$\left(\frac{\partial \mathbf{B}}{\partial t} = \sqrt{a}\nabla \times (\mathbf{v}' \times \mathbf{B}) - 2\frac{\dot{a}}{a}\mathbf{B} + \frac{1}{a^2}\eta\nabla^2\mathbf{B}\right)$$