Numerical Simulations for Magnetohydrodynamics based on Upwind Schemes Energy vs Entropy

Hanbyul Jang, Dongsu Ryu

Department of Physics, School of Natural Sciences, UNIST, Korea

Upwind schemes

Numerical methods for solving hyperbolic equations using propagation information

Robust and reliable schemes for gas dynamics

MHD-E

 $\stackrel{\rho}{v_i}$ proper rest mass density $p^* = p + \frac{1}{2}B^2$ total pressure

MHD-S

 $\stackrel{\rho}{v_i}$ proper rest mass density $p^* = p + \frac{1}{2}B^2$ total pressure

Jacobian matrix

$$\frac{\overrightarrow{\partial q}}{\partial t} + \frac{\overrightarrow{\partial F}}{\partial x} = \frac{\overrightarrow{\partial q}}{\partial t} + A \frac{\overrightarrow{\partial q}}{\partial x} = 0 \qquad \left(A = \frac{\overrightarrow{\partial F}}{\overrightarrow{\partial q}} = \frac{\overrightarrow{\partial F}}{\overrightarrow{\partial u}} \frac{\overrightarrow{\partial u}}{\overrightarrow{\partial q}} \right)$$

$$A = \begin{pmatrix} A_{11} A_{12} A_{13} A_{14} A_{15} A_{16} A_{17} \\ A_{21} A_{22} A_{23} A_{24} A_{25} A_{26} A_{27} \\ A_{31} A_{32} A_{33} A_{34} A_{35} A_{36} A_{37} \\ A_{41} A_{42} A_{43} A_{44} A_{45} A_{46} A_{47} \\ 0 \ 1 \ 0 \ 0 \ 0 \ 0 \\ A_{61} A_{62} A_{63} A_{64} A_{65} A_{66} A_{67} \\ A_{71} A_{72} A_{73} A_{74} A_{75} A_{76} A_{77} \end{pmatrix}$$

 $\vec{u} = \begin{bmatrix} \rho \\ v_x \\ v_y \\ v_z \\ p \\ B_y \\ B_z \end{bmatrix}$

parameter vector

Jacobian matrix

Eigenvalues det $(A - a_m I) = 0$ (m = 1, 2, 3, 4, 5, 6, 7)Right Eigenvectors $\overrightarrow{AR_m} = a_m \overrightarrow{R_m}$ Left Eigenvectors $\overrightarrow{L_m} \cdot A = a_m \overrightarrow{L_m}$

$$LAR = \Lambda = \begin{bmatrix} a_1 & 0 & 0 & 0 & 0 & 0 \\ 0 & a_2 & 0 & 0 & 0 & 0 \\ 0 & a_3 & 0 & 0 & 0 & 0 \\ 0 & 0 & a_3 & 0 & 0 & 0 \\ 0 & 0 & 0 & a_4 & 0 & 0 & 0 \\ 0 & 0 & 0 & a_4 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & a_5 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & a_6 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & a_7 \end{bmatrix} \qquad \begin{array}{c} L \frac{\partial q}{\partial t} + A \frac{\partial q}{\partial x} = 0 \quad (LR = I) \\ L \frac{\partial q}{\partial t} + A L \frac{\partial q}{\partial x} = 0 \\ L \frac{\partial q}{\partial t} + A L \frac{\partial q}{\partial x} = 0 \\ R = [\overline{R_1} | \overline{R_2} | \dots | \overline{R_m}] \quad \frac{\partial w}{\partial t} + A \frac{\partial w}{\partial x} = 0 \quad (w \equiv Lq) \end{array}$$

 $\stackrel{o}{\longrightarrow} \frac{\partial w_m}{\partial t} + a_m \frac{\partial w_m}{\partial x} = 0$

The system decouples into m independent advection equations

Eigenvalues

$$\begin{split} \textbf{MHD} \quad c_s^2 &= \frac{\gamma p}{\rho} \quad b_i = \frac{B_i}{\sqrt{\rho}} \\ a_1 &= v_x - \sqrt{\frac{1}{2} [c_s^2 + b^2 + \sqrt{(c_s^2 + b^2)^2 - 4c_s^2 b_x^2}]}, \quad -\text{fa} \\ a_2 &= v_x - |b_x|, \quad -\text{Al} \\ a_3 &= v_x - \sqrt{\frac{1}{2} [c_s^2 + b^2 - \sqrt{(c_s^2 + b^2)^2 - 4c_s^2 b_x^2}]}, \quad -\text{sl} \\ a_4 &= v_x, \quad \text{er} \\ a_5 &= v_x + \sqrt{\frac{1}{2} [c_s^2 + b^2 - \sqrt{(c_s^2 + b^2)^2 - 4c_s^2 b_x^2}]}, \quad +\text{sl} \\ a_6 &= v_x + |b_x|, \quad +\text{Al} \\ a_7 &= v_x + \sqrt{\frac{1}{2} [c_s^2 + b^2 + \sqrt{(c_s^2 + b^2)^2 - 4c_s^2 b_x^2}]}, \quad +\text{fa} \end{split}$$

- -fast magnetosonic mode
- -Alfven mode
- -slow magnetosonic mode

entropy mode

- +slow magnetosonic mode
- +Alfven mode
- +fast magnetosonic mode

$$a_1(_{fast}^-) \le a_2(_{Alfven}^-) \le a_3(_{slow}^-) \le a_4(=v_x) \le a_5(_{slow}^+) \le a_6(_{Alfven}^+) \le a_7(_{fast}^+) \le a_7(_$$

Eigenvectors

 $(\lambda + v_x)C$

 $Y_{y}/\sqrt{\rho}$ $Y_{s}/\sqrt{\rho}$

1. compressible mode

$$\beta_y = \frac{B_y}{\sqrt{B_y^2 + B_z^2}}, \quad \beta_z = \frac{B_z}{\sqrt{B_y^2 + B_z^2}}, \quad \alpha_s = \frac{\sqrt{\lambda_f^2 - c_s^2}}{\sqrt{\lambda_f^2 - \lambda_s^2}}, \qquad \alpha_f = \frac{\sqrt{c_s^2 - \lambda_s^2}}{\sqrt{\lambda_f^2 - \lambda_s^2}}$$

for fast mode

$$\begin{split} C &= \alpha_f, & Y_y = c_s \alpha_s \beta_y, & Y_z = c_s \alpha_s \beta_z, & D = \frac{b_x}{\lambda_f} = \pm \frac{\lambda_s}{c_s} sgn\left(B_x\right) \\ \text{for slow mode} & \\ C &= \alpha_s, & Y_y = -c_s \alpha_f \beta_y, & Y_z = -c_s \alpha_f \beta_z, & D = \frac{b_x}{\lambda_s} = \pm \frac{\lambda_f}{c_s} sgn\left(B_x\right) \end{split}$$

for Alfven mode

 $D = \pm sgn(B_x)$

$$\begin{array}{c} C \\ (\lambda + v_{z})C \\ v_{y}C - Y_{y}D \\ v_{z}C - Y_{z}D \\ v_{z}C - Y_{z}D \\ \frac{Y_{y}/\sqrt{\rho}}{Y_{z}/\sqrt{\rho}} \\ \frac{Y_{z}/\sqrt{\rho}}{\gamma - 1}c_{z}^{2})C - (Y_{y}v_{y} + Y_{z}v_{z})D \end{array} \right)^{T} \left(\begin{array}{c} \left[\frac{1}{2}(\gamma - 1)v^{2} - \lambda v_{z}\right]C + (Y_{y}v_{y} + Y_{z}v_{z})D \\ \left[\lambda - (\gamma - 1)v_{z}\right]C \\ (1 - \gamma)v_{y}C - Y_{y}D \\ (1 - \gamma)v_{z}C - Y_{z}D \\ B_{y}(1 - \gamma)C + Y_{y}\sqrt{\rho} \\ B_{z}(1 - \gamma)C + Y_{z}\sqrt{\rho} \\ (\gamma - 1)C \end{array} \right)^{T} \right)$$

2. Alfven mode

 $(\lambda^2 + \lambda v_x + \frac{1}{2}v^2 -$

 $\overrightarrow{R} =$

$$\overrightarrow{R} = \begin{bmatrix} 0, \ 0, \ -\beta_z, \ \beta_y, \ \beta_z D / \sqrt{\rho}, \ -\beta_z D / \sqrt{\rho}, \ \beta_y v_z - \beta_z v_y \end{bmatrix}^T$$

$$\overrightarrow{L} = \frac{1}{2} \begin{bmatrix} \beta_z v_y - \beta_y v_z, \ 0, \ -\beta_z, \ \beta_y, \ \beta_z D \sqrt{\rho}, \ -\beta_y D \sqrt{\rho}, \ 0 \end{bmatrix}$$

3. Entropy mode

$$\overrightarrow{R} = \left[1, v_x, v_y, v_z, 0, 0 \underbrace{\frac{1}{2}v^2}_{2}\right]^T, \quad \left[\overrightarrow{L} = \frac{(\gamma - 1)}{c_s^2} \left[\frac{c_s^2}{(\gamma - 1)} - \frac{1}{2}v^2, v_x, v_y, v_z, B_y, B_z, -1\right]\right]$$

Eigenvectors

$$\beta_y = \frac{B_y}{\sqrt{B_y^2 + B_z^2}}, \quad \beta_z = \frac{B_z}{\sqrt{B_y^2 + B_z^2}}, \quad \alpha_s = \frac{\sqrt{\lambda_f^2 - c_s^2}}{\sqrt{\lambda_f^2 - \lambda_s^2}}, \qquad \alpha_f = \frac{\sqrt{c_s^2 - \lambda_s^2}}{\sqrt{\lambda_f^2 - \lambda_s^2}}$$

for fast mode

 $\begin{array}{c} Y_y \sqrt{\rho} \\ Y_z \sqrt{\rho} \end{array}$

$$-S$$

$$C = \alpha_{f}, \qquad Y_{y} = c_{s}\alpha_{s}\beta_{y}, \qquad Y_{z} = c_{s}\alpha_{s}\beta_{z}, \qquad D = \frac{b_{x}}{\lambda_{f}} = \pm \frac{\lambda_{s}}{c_{s}}sgn(B_{x})$$
for slow mode
$$C = \alpha_{s}, \qquad Y_{y} = -c_{s}\alpha_{f}\beta_{y}, \qquad Y_{z} = -c_{s}\alpha_{f}\beta_{z}, \qquad D = \frac{b_{x}}{\lambda_{s}} = \pm \frac{\lambda_{f}}{c_{s}}sgn(B_{x})$$
mode
$$D = \pm sgn(B_{x})$$

$$\vec{L} = \frac{1}{2c_{s}^{2}} \begin{bmatrix} (c_{s}^{2}(\gamma - 1)/\gamma - \lambda v_{x}]C + (Y_{y}v_{y} + Y_{z}v_{z})D \\ -Y_{y}D \\ -Y_{z}D \\ Y_{y}\sqrt{\rho} \end{bmatrix}$$

1. compressible mode

2. Alfven mode

 $\vec{R} = \begin{pmatrix} C \\ (\lambda + v_x) C \\ v_y C - Y_y D \\ v_z C - Y_z D \\ Y_y / \sqrt{\rho} \\ Y_z / \sqrt{\rho} \\ Y_z / \sqrt{\rho} \end{pmatrix}$

$$\overrightarrow{R} = \begin{bmatrix} 0, \ 0, \ -\beta_z, \ \beta_y, \ \beta_z D / \sqrt{\rho}, \ -\beta_z D / \sqrt{\rho}, \end{bmatrix}^T$$

$$\overrightarrow{L} = \frac{1}{2} \begin{bmatrix} \beta_z v_y - \beta_y v_z, \ 0, \ -\beta_z, \ \beta_y, \ \beta_z D \sqrt{\rho}, \ -\beta_y D \sqrt{\rho}, \ 0 \end{bmatrix}$$

3. Entropy mode

$$\overrightarrow{R} = \begin{bmatrix} 1, v_x, v_y, v_z, 0, 0 \\ c_s^2(1-\gamma)/\gamma \end{bmatrix}^T, \quad \overrightarrow{L} = \begin{bmatrix} 1/\gamma, 0, 0, 0, 0, 0, -1/c_s^2 \end{bmatrix}$$

Numerical Simulations

Total Variation Diminishing (TVD) Harten 1983 (HD), Ryu et al 1995 (MHD)

Weighted Essentially Non-Oscillatory (WENO) Jiang & Shu 1996 (HD), Jiang & Wu 1999 (MHD)

TVD(Space2-Time2)WENO3-RK3(Space3-Time3)WENO5-RK4(Space5-Time4)

Numerical Simulations

MHD-S

TVD_E TVD_S WENO3-RK3_E WENO3-RK3_S WENO5-RK4_E WENO5-RK4_S

MHD 1D Alfven wave tests

MHD 1D Alfven wave tests

MHD 2,3D Alfven wave tests

Flux CT scheme

A DIVERGENCE-FREE UPWIND CODE FOR MULTIDIMENSIONAL MAGNETOHYDRODYNAMIC FLOWS

Dongsu Ryu,¹ Francesco Miniati,² T. W. Jones,² and Adam Frank³ Received 1998 March 30; accepted 1998 July 13

$$\frac{\partial B_x}{\partial t} + \frac{\partial}{\partial y} \left(B_x v_y - B_y v_x \right) = 0 , \qquad (1)$$

and

$$\frac{\partial B_{y}}{\partial t} + \frac{\partial}{\partial x} \left(B_{y} v_{x} - B_{x} v_{y} \right) = 0 .$$
⁽²⁾

$$B_{x,i,j} = \frac{1}{2}(b_{x,i,j} + b_{x,i-1,j})$$
(3)

and

$$B_{y,i,j} = \frac{1}{2}(b_{y,i,j} + b_{y,i,j-1}) .$$
(4)

$$\bar{f}_{x,i,j} = \frac{1}{2} \left(B_{y,i,j}^{n} v_{x,i,j}^{n} + B_{y,i+1,j}^{n} v_{x,i+1,j}^{n} \right) - \frac{\Delta x}{2 \Delta t^{n}} \sum_{k=1}^{7} \beta_{k,i+1/2,j}^{n} R_{k,i+1/2,j}^{n} (5) , \qquad (6)$$

$$\bar{f}_{y,i,j} = \frac{1}{2} \left(B_{x,i,j}^{n} v_{y,i,j}^{n} + B_{x,i,j+1}^{n} v_{y,i,j+1}^{n} \right) - \frac{\Delta y}{2 \Delta t^{n}} \sum_{k=1}^{7} \beta_{k,i,j+1/2,j}^{n} R_{k,i,j+1/2}^{n}(5) .$$
(7)

= 0

and

$$b_{y,i,j}^{n+1} = b_{y,i,j}^{n} + \frac{\Delta t^{n}}{\Delta x} \left(\bar{\Omega}_{i,j} - \bar{\Omega}_{i-1,j} \right).$$
(17)

$$\oint_{S} \boldsymbol{b}^{n+1} \cdot d\boldsymbol{S} = (b_{x,i,j}^{n+1} - b_{x,i-1,j}^{n+1}) \Delta \boldsymbol{y} + (b_{y,i,j}^{n+1} - b_{y,i,j-1}^{n+1})$$
$$\Delta \boldsymbol{x} = 0 , \quad (18)$$

MHD Alfven wave tests

MHD 2D Fast wave test

Periodic boundary CFL = 0.8tend = 10 $\gamma \!=\! 5/3 \!=\! 1.66666666667$ $k_x = 2\pi/xsize$ $k_{y} = 2\pi/ysize$ $n_x = n_y = 32$ (2D) $\rho = \rho_0 + \delta \rho$ $v_{\parallel} = v_{\parallel 0} + \delta v_{\parallel}$ $v_{\perp} = v_{\perp 0} + \delta v_{\perp}$ $v_z = v_{z0} + \delta v_z$ $B_{\parallel} = B_{\parallel 0}$ $B_{\perp} = B_{\perp 0} + \delta B_{\perp}$ $B_z = B_{z0} + \delta B_z$ $p = p_0 + \delta p$

$$\begin{split} \rho_{0} &= 1 \\ v_{\parallel 0} = v_{\perp 0} = v_{z0} = 0 \\ B_{\parallel 0} &= 10 \\ B_{\perp 0} &= 5 \\ B_{z0} &= 0 \\ p_{0} &= 1/\gamma = 0.6 \\ c_{s0}^{2} &= \gamma p_{0}/\rho_{0} = 1 \\ \lambda &= \lambda_{fast}^{+} \end{split}$$

$$\begin{split} \delta v_{\parallel} &= 10^{-4} \cos(k_x x + k_y y) \\ \delta \rho &= \frac{\rho_0}{\lambda} \delta v_{\parallel} \\ \delta v_{\perp} &= \frac{b_{\parallel 0} b_{\perp 0}}{b_{\parallel 0}^2 - \lambda^2} \delta v_{\parallel} \\ \delta v_z &= 0 \\ \delta B_{\perp} &= -\frac{\lambda}{b_{\parallel 0}} \sqrt{\rho_0} \delta v_{\perp} \\ \delta B_z &= 0 \\ \delta P_z &= 0 \\ \delta p &= c_{s0}^2 \delta \rho \end{split}$$

x

MHD 2D Fast wave test

Flux CT scheme

A DIVERGENCE-FREE UPWIND CODE FOR MULTIDIMENSIONAL MAGNETOHYDRODYNAMIC FLOWS

Dongsu Ryu,¹ Francesco Miniati,² T. W. Jones,² and Adam Frank³ Received 1998 March 30; accepted 1998 July 13

$$\frac{\partial B_x}{\partial t} + \frac{\partial}{\partial y} \left(B_x v_y - B_y v_x \right) = 0 , \qquad (1)$$

and

$$\frac{\partial B_{y}}{\partial t} + \frac{\partial}{\partial x} \left(B_{y} v_{x} - B_{x} v_{y} \right) = 0 .$$
⁽²⁾

$$B_{x,i,j} = \frac{1}{2}(b_{x,i,j} + b_{x,i-1,j})$$
(3)

and

$$B_{y,i,j} = \frac{1}{2}(b_{y,i,j} + b_{y,i,j-1}) .$$
(4)

$$\bar{f}_{x,i,j} = \frac{1}{2} \left(B_{y,i,j}^{n} v_{x,i,j}^{n} + B_{y,i+1,j}^{n} v_{x,i+1,j}^{n} \right) - \frac{\Delta x}{2 \Delta t^{n}} \sum_{k=1}^{7} \beta_{k,i+1/2,j}^{n} R_{k,i+1/2,j}^{n} (5) , \qquad (6)$$

$$\bar{f}_{y,i,j} = \frac{1}{2} \left(B_{x,i,j}^{n} v_{y,i,j}^{n} + B_{x,i,j+1}^{n} v_{y,i,j+1}^{n} \right) - \frac{\Delta y}{2 \Delta t^{n}} \sum_{k=1}^{7} \beta_{k,i,j+1/2,j}^{n} R_{k,i,j+1/2}^{n}(5) .$$
(7)

= 0

and

$$b_{y,i,j}^{n+1} = b_{y,i,j}^{n} + \frac{\Delta t^{n}}{\Delta x} \left(\bar{\Omega}_{i,j} - \bar{\Omega}_{i-1,j} \right).$$
(17)

$$\oint_{S} \boldsymbol{b}^{n+1} \cdot d\boldsymbol{S} = (b_{x,i,j}^{n+1} - b_{x,i-1,j}^{n+1}) \Delta \boldsymbol{y} + (b_{y,i,j}^{n+1} - b_{y,i,j-1}^{n+1})$$
$$\Delta \boldsymbol{x} = 0 , \quad (18)$$

Conclusions Flux CT scheme $\overrightarrow{\nabla} \cdot \overrightarrow{B} = 0$

Induces numerical errors to B->E->p Serious oscillation is generated for strong B

Conclusions

In the shock regimes → MHD-E Else where → MHD-S

using TVD, WENO3, WENO5

Conclusions Application to Nuclear Fusion : in tokamok

No shocks, p<<E, low β ($p_g \ll p_m$) \longrightarrow MHD-S

Propagate waves many times \rightarrow small numerical dissipation

Develop Korea tokamak simulations!

Thank you :)