### INSTABILITY OF EVAPORATIVE LAYERS IN THE INTERSTELLAR MEDIUM

Jeong-Gyu Kim Seoul National University KNAG Meeting Jan 23, 2015

### 1. Instability of Evaporation Fronts in Neutral Atomic ISM

Kim and Kim (2013)

# 2. Instability of Magnetized Ionization Fronts

Kim and Kim (2014)

### **Two-phase Model for Neutral ISM**

| Component    | <i>T</i> (K)   | $n ({\rm cm}^{-3})$ |
|--------------|----------------|---------------------|
| Molecular    | 10-20          | $10^2 - 10^6$       |
| Cold atomic  | 50-100         | 20-50               |
| Warm atomic  | 6000 - 10000   | 0.2 - 0.5           |
| Warm ionized | $\sim \! 8000$ | 0.2 - 0.5           |
| Hot ionized  | $\sim 10^{6}$  | $\sim 0.0065$       |
|              | (Ferriere 01)  |                     |

- Neutral gas segregates into a cold neutral medium (CNM) and a warm neutral medium (WNM) by thermal instability (Field+69)
- In rough pressure equilibrium even in supersonic turbulence as long as  $t_{\rm shock} > t_{\rm cool}$  (Wolfire+69)
- Thermal fronts are phase transition layers connecting CNM and WNM





(Piontek+04)

### Structure of Steady Thermal Fronts



### Instability of Evaporation Fronts



#### **Outstanding Questions**

- What determines the characteristic length and time scales of the instability?
- Can the instability in nonlinear regime drive small-scale turbulence in the diffuse ISM?

### Instability Mechanism

- After passing the distorted front, the flow is refracted toward the normal to the front due to expansion.
- Normal velocity increases at the parts convex towards the downstream, increasing the mass flux there.
- 3. Since the local evaporation rate through the front remains constant, the front should advance further downstream.



$$\Omega = kv_1 \times \sigma(\alpha)$$

the only relevant (inverse of) time scale that can be constructed out of physical parameters of the problem

### Stabilization by Conduction

- Conduction-mediated heat enhances evaporation rate, reducing a need for the front to advance further.
- Typical length, times scales are





• Full stability analysis gives

$$\begin{split} \lambda_{\max} &\approx 0.2 \,\mathrm{pc} \left(\frac{\mathrm{v}_1}{10 \,\mathrm{m\,s}^{-1}}\right)^{-1} \left(\frac{\mathrm{n}_1}{10 \,\mathrm{cm}^{-3}}\right)^{-1} \left(\frac{\kappa}{10^5 \,\mathrm{erg\,s}^{-1} \,\mathrm{cm}^{-1} \,\mathrm{K}}\right) \\ t_{\max} &\approx 0.92 \,\mathrm{Myr} \left(\frac{\mathrm{v}_1}{10 \,\mathrm{m\,s}^{-1}}\right)^{-2} \left(\frac{\mathrm{n}_1}{10 \,\mathrm{cm}^{-3}}\right)^{-1} \left(\frac{\kappa}{10^5 \,\mathrm{erg\,s}^{-1} \,\mathrm{cm}^{-1} \,\mathrm{K}}\right) \end{split}$$

# **2D Numerical Simulations**





- Front saturates to a steady state with a finger-like shape pointing toward the WNM.
- Flow remains laminar, without generating turbulence

### 1. Instability of Evaporation Fronts in Neutral Atomic ISM

Kim and Kim (2013)

# 2. Instability of Magnetized Ionization Fronts

Kim and Kim (2014)





Deharveng et al. (2011)

- Evolution of IF for embedded H II regions
  - R-type  $\Rightarrow$  R-Critical  $\Rightarrow$  D-Critical + Shock  $\Rightarrow$  D-type
- H II regions are rich in substructures such as globules, filaments, pillars (or "elephant trunks")
- Dynamical instabilities in IFs
  - **IF instability** (Vandervoort62, Axford64, Williams+02)
  - Rayleigh-Taylor instability (Spitzer+54, Ricotti+13, Park+14)
  - Thin-shell instability (Giuliani79, Vishniac83, Garcia-Segura+96, Whalen+08)

#### Magnetized H II regions

- Observed thermal-to-magnetic pressure ratio β
  - $\beta \sim 2-20$  (HII) (Heiles+81, Harvey-Smith+11, Rodriguez+12)
  - $\beta \sim 0.04$ -0.3 (HI or molecular) (Brogan+99, Crutcher99, Heiles+05)







(Arthur+11)



- Solve for the density contrast in terms of
  - Heating factor:  $T_2/T_1 \approx 100$
  - Plasma beta:  $\beta = c^2/v_A^2$

- Mach number: 
$$M_{\rm M} = v/(c^2 + v_{\rm A}^2)^{1/2}$$

$$j_z \equiv \rho_1 v_{z1} = \rho_2 v_{z2} = m_{\rm H} F_{\rm ph} \,,$$

$$P_1 + \rho_1 v_{z1}^2 + \frac{B_{x1}^2}{8\pi} = P_2 + \rho_2 v_{z2}^2 + \frac{B_{x2}^2}{8\pi},$$
$$B_{x1} v_{z1} = B_{x2} v_{z2}.$$

### Jump Conditions for Magnetized IFs

(e.g., Redman+98, Williasms+00, Draine 11)



- For B-fields parallel to IF
  - Critical IFs always have  $M_{M2} = 1$
  - R-critical = D-critical + Isothermal MHD shock
  - Strong B-fields tends to reduce expansion factor of weak D-type IFs by a factor of  $(1 + 1/(2\beta_1))$

## Linear Analysis: Method

- Decompose perturbations into Fourier modes of the form  $\propto \exp(i\mathbf{k} \cdot \mathbf{x} + \Omega t)$
- Find MHD waves that are evanescent away from the IF
- Determine growth rate and amplitudes of waves that fulfills perturbed jump conditions across the IF

$$\begin{split} &\Delta\left[\rho v_{\mathrm{n}}\right]=0\,,\\ &\Delta\left[\rho v_{\mathrm{n}}\mathbf{v}_{\mathrm{t}}-\frac{B_{\mathrm{n}}\mathbf{B}_{\mathrm{t}}}{4\pi}\right]=0\,,\\ &\Delta\left[\rho v_{\mathrm{n}}^{2}+P+\frac{B_{\mathrm{t}}^{2}}{8\pi}\right]=-\Delta\left[\rho\right]g\zeta\,,\\ &\Delta\left[v_{\mathrm{n}}\mathbf{B}_{\mathrm{t}}-B_{\mathrm{n}}\mathbf{v}_{\mathrm{t}}\right]=0\,, \end{split}$$



$$\Omega = kv_1 \times \sigma(\alpha, \beta_1, \mathcal{M}_M; G)$$
$$k = (k_x^2 + k_y^2)^{1/2}$$

# **Dispersion Relations**



• IF instability either cooperates with RTI (g>0) or becomes suppressed by buoyancy (g<0)



• Stabilized by magnetic tension  $\mathcal{M}_{M2} < \left(\frac{2}{2\beta_1 - 1}\right)^{1/2}, \text{ for stability},$ 

### Effects of magnetic tension

• Magnetic tension reduces mass flux

 $B'_z/B_x \sim k\zeta$ 

$$|v'_{\rm A}| \sim |B_z|'/\sqrt{4\pi\rho} \sim v_{\rm A}k\zeta$$



• Flows with small Alfvén-Mach number are stablized.

# Discussion

• IF instability growth time:

$$\Omega^{-1} \approx 1.5 \times 10^4 \frac{(1+\beta_1^{-1})^{1/2}}{\mathcal{M}_{\rm M1}\sigma} \left(\frac{\lambda}{0.1\,{\rm pc}}\right) \quad \text{yr}$$

- Completely stabilized by tension for  $\beta_1 < 1.5$ 
  - Photodissociation regions supported by magnetic pressure
- Can IF instability manifest in simulations of H II regions?
  - For ~ 0.01pc resolution, perturbations with wavelength < 0.1pc would be damped by numerical diffusion
- Caveats of the simplified model
  - Steady state, plane-parallel, uniform background
  - Presence of shock front
    - How IF instability would affect and interact with large-scale RTI, thin-shell instability
    - Gas ahead of IF is subject to non-steady heating/cooling

# Thank you!







# Thin-shell instability



Ram Pressure

Neutral Shell
Ionized Shell
Thermal Pressure

UV field



Adopted from Garcia-Segura+96

# Compressibility effect

• Compressible flow:  $v_2 \sim c_2$ 

$$\rho'/\rho \sim \mathcal{M}_s^2 P'/P \qquad j' = \rho' v + \rho(v' - \Omega\zeta) = 0$$

- $\sigma$  decreases as  $M_{s2}$  increases
- Instability is suppressed for  $M_{s2} = 1$  (D-critical)