Problems in Estimating Non-thermal Radiation from Supernova Remnants

Hyesung Kang

Pusan National University, Pusan, Korea

SNR = shock -> CR acceleration -> non-thermal radiation

Nonthermal radiation from CRs accelerated at SNR shocks

- CR e + B field → Synchrotron (radio X-ray)
- thermal & nonthermal bremsstrahlung
- CR p + p $\rightarrow \pi^0$ decay \rightarrow 100 GeV γ -ray
- CR e + CMBR \rightarrow Inverse Compton scattering \rightarrow TeV γ -ray

Provide observational evidence and constraints for CR acceleration.

X-ray observation → B field amplification

Tycho's Chandra X-ray Images of SN Ia Remnants

Kepler's

- thin filaments of nonthermal X-ray indicating fast synchrotron cooling
- B₂ ~ a few 100 μG (mag. field amplification Bell & Lucek 2000, Bell 2004)
 - higher than ISM field of ~5 μG
- CR electrons with $\rm E_{ele}$ ~ 10's TeV

γ -ray emission from Tycho's SNRs \rightarrow steep proton spectrum

Basics of Diffusive Shock Acceleration

Collision with approaching mirrors → gain energy

Alfven waves in a converging flow act as converging mirrors

 \rightarrow particles are scattered by waves and isotropized in local fluid frame

→ cross the shock many times, gain $\frac{\Delta p}{p} \sim \frac{u_1 - u_2}{v}$ at each shock crossing

Test-particle spectrum→ non-thermal radiation spectrum

Nonthermal Radiation from SNR: DSA simulations Kang, Edmon, Jones 2012

at different locations: upstream, shock, & 3 downstream locations

B field amplification via plasma instabilities

streaming CRs upstream of shocks

- → excite resonant Alfven waves
- → amplify B field (Bell 1978, Lucek & Bell 2000)

B field lines, t = 1.5

Bell's CR current driven instability Riquelme & Spitkovsky 2009 PIC (Particle in Cell) simulation

0

tγmax

problem !

 \Rightarrow steeper slope \Rightarrow less efficient acceleration

DSA kinetic simulations of SNRs

Basic Equations for DSA Simulations in diffusion approximation

$$\frac{\partial \rho}{\partial t} + \frac{\partial (u\rho)}{\partial r} = -\frac{2}{r}\rho u$$
(1D plane quasi-parallel shock)
$$\frac{\partial (\rho u)}{\partial t} + \frac{\partial}{\partial r}(\rho u^{2} + P_{g} + P_{c}) = -\frac{2}{r}\rho u^{2} \text{ ordinary gasdynamics EQs + P_{c} terms}$$

$$\frac{\partial (\rho e_{g})}{\partial t} + \frac{\partial}{\partial r}(\rho e_{g} u + P_{g} u) = -u \frac{\partial P_{c}}{\partial r} - \frac{2}{r}(\rho e_{g} u + P_{g} u) + W - L$$

$$W = \text{wave dissipation heating, } L = \text{thermal energy loss due to injection}$$
Diffusion Convection Eq. with wave drift effect
$$\frac{\partial f}{\partial t} + (u + u_{w}) \frac{\partial f}{\partial r} = \frac{1}{3r^{2}} \frac{\partial}{\partial r} [r^{2}(u + u_{w})] \cdot p \frac{\partial f}{\partial p} + \frac{1}{r^{2}} \frac{\partial}{\partial r} [r^{2}\kappa(r, p) \frac{\partial f}{\partial r}] + Q(r, p)$$

$$\Rightarrow P_{c} = \frac{4}{3} \pi m_{p} c^{2} \int_{0}^{\infty} f(p) \frac{p^{4} dp}{\sqrt{p^{2} + 1}} : \text{CR pressure}$$

 $u_w \approx +v_A$ in upstream, $u_w \approx 0$ or $-v_A$ in downstream, $\kappa(x, p) \approx \kappa^* p(\rho / \rho_0)^{-1}$: Bohm - like diffusion Q(x, p) = thermal leakage injection

Phenomenological models for wave-particle interactions

(See Caprioli 2012, Lee, Ellison, Nagataki 2012)

- Alfven speed:
$$V_A = \frac{B_0 + (B(r) - B_0)f_A}{\sqrt{4\pi\rho(r)}}$$
 with $f_A \sim 0.1 - 0.5$

parallel component of B field

- B field amplification via plasma instabilities : depends on the modification (precursor) due to CR pressure

$$\frac{B(r)^{2}}{B_{0}^{2}} = 1 + (1 - \omega_{H}) \frac{4}{25} M_{A,0}^{2} \frac{(1 - U(r)^{5/4})^{2}}{U(r)^{3/2}} \text{ in upstream } (r > R_{s}),$$

$$\frac{B_{2}}{B_{1}} = \sqrt{\frac{1}{3} + \frac{2}{3} \left(\frac{\rho_{2}}{\rho_{1}}\right)^{2}} r = R_{s}; \quad B(r) = B_{2} \cdot \frac{\rho(r)}{\rho_{2}} \text{ in downstream } (r < R_{s}),$$

compression across the shock where $U(r) = [V_s - u(r)]/V_s$, $M_{A,0} = V_s(t)/V_{A,0}$, $V_{A,0} = B_0/\sqrt{4\pi\rho_0}$

- Gas heating due to wave dissipation : $W(r,t) = -\omega_H \cdot V_A(r) \frac{\partial P_c}{\partial r}$ with $\omega_H \sim 0.5$
- Free Escape Boundary: $f(p, R_{\text{FEB}}) = 0$ at $R_{\text{FEB}} = \xi \cdot R_s$ where $\xi = 1.1 1.5$

Escape of highest energy CRs from SNRs

SNR Model	DSA model parameters	upstream drift :
$M_{ei} = 1.4 \text{ M}_{\odot}, \ E_o = 10^{51} \text{ ergs}$	$\varepsilon_B = 0.23$: injection	$u_{w,1} = +V_A$
$n_{ISM} = 0.3 \text{ cm}^{-3}, T_0 = 3 \times 10^4 \text{ K},$	$f_A = 0.1 - 1.0$: V_A Alfven speed	downstream drift :
$B_0 = 5 \mu G$	$\omega_H = 0.5$: wave dissipation	$u_{w,2} = 0$
$\Rightarrow M_s, M_A$	$R_{FEB} = (1.1 - 1.5) \cdot R_s$: FEB	

Model parameters

Name ^b	n_H (cm ⁻³)	<i>T</i> ₀ (K)	r_o (pc)	t_o (years)	f_A ^c	ω_H d	ζe	$\begin{array}{c} u_{w,2} & {}^{\mathrm{f}} \\ (\mathrm{km} \; \mathrm{s}^{-1}) \end{array}$	$v_{A,0}$
W1	0.3	3×10^4	3.18	255.	1.0	0.5	0.1	0	16.8
W2	0.3	3×10^4	3.18	255.	1.0	0.1	0.1	0	16.8
W3	0.3	3×10^4	3.18	255.	0.1	0.5	0.1	0	16.8
W4	0.3	3×10^4	3.18	255.	1.0	0.5	0.1	$-v_A$	16.8

Strong shocks:

$$M_A \approx 180 \cdot \left(\frac{u_s}{3000 \text{ km/s}}\right), V_A = 16.8 \text{ km/s}$$
 $V_A = \frac{B_0 + (B(r) - B_0)f_A}{\sqrt{4\pi\rho(r)}}$
 $M_s \approx 115 \cdot \left(\frac{u_s}{3000 \text{ km/s}}\right), c_s = 26 \text{ km/s}$
 $\frac{B(r)^2}{B_0^2} \sim (1 - \omega_H) \frac{4}{25} M_{A,0}^2 \frac{(1 - U(r)^{5/4})^2}{U(r)^{3/2}}$

.

Effects of Free Escape Boundary

- greater $R_{FEB} \rightarrow \text{higher } p_{p,max}$

- R_{FEB} controls the shape of highest end of proton spectrum

Highest End of CR spectrum determines GeV-TeV γ -ray emission. So details of DSA modeling are important.

DSA model parameters $\varepsilon_B = 0.2 - 0.23$: injection $f_A = 0.1 - 1.0$: $V_A(r,t)$ Alfven speed $\omega_H = 0.5$: wave dissipation, MFA $R_{FEB} = (1.1 - 1.5) R_s$: FEB

time - dependent evolution $T_0 \Rightarrow M_s(t)$: sonic Mach no. \Rightarrow CR efficiency $n_0 \& B_0 \Rightarrow M_{A,0}$: Alfven Mach no. \Rightarrow MFA, B(r,t) $B(r,t) \Rightarrow V_A(r,t) \Rightarrow q$: power - law slope $B(r,t) \Rightarrow p_{max,p}, p_{max,e}$ (cooling) FEB & $B(r,t) \Rightarrow$ exponential tail

IV. Summary

- * Observations of Supernova Remnants
- X-ray \rightarrow amplified B fields: B₂~ 100-300 µG
- γ -ray \rightarrow hadronic π^0 emission confirmed proton spectrum: $N_p(E) \propto E^{-2.2} - E^{-2.3}$ required
- * Hybrid/PIC plasma simulations have shown that
- streaming and current driven instabilities \rightarrow amplify B $\delta B / B_o \sim 10 30$ is possible
- * Wave drift may cause steepening of CR spectrum
- Nonlinear DSA can be consistent with γ-ray observation
- Detail modeling of DSA & time-dependent history are important in predicting non-thermal radiation spectrum

Nonthermal emission from nonlinear DSA vs. multiband observations

synchrotron (dotted line), IC (short dashed line) bremsstrahlung (long dashed line), π0 decays (dot-dashed line)

Nonlinear DSA: too efficient ? - wave drift

- escape of highest energy CRs
- damping of turbulent waves
- Steepening of spectrum

Nonlinear DSA simulations of Type Ia SNR: Edmon, Kang, Jones, Ma 2011

DSAed CR spectrum vs. photon spectrum

CR spectrum in test - particle regime $f_{DSA}(p) \propto p^{-q}, N(E) \propto E^{-(q-2)},$ electron synchrotron + IC scattering photon spectrum at shock $j_v \propto v^{-\alpha}$, $\alpha_{\text{syn(IC),shock}} = (q-3)/2$, $\alpha_{\text{syn(IC),shock}} \approx 0.5$ for q = 4volume integrated spectrum of electrons steepenes by +1 in slope $F_e(p) = \int f_e(p, x) dx \propto p^{-q-1}$ (due to cooling) above $p_{break}(t)$ integrated photon spectrum (unresolved observation) $J_v \propto v^{-\alpha}$, $\alpha_{\text{syn(IC),integ}} = \alpha_{\text{syn(IC),shock}} + 0.5$, $\alpha_{\text{integ}} \approx 1.0$ for q = 4X-ray volume integrated spectrum of proton spectrum proton + p collision $\Rightarrow \pi^0$ decay γ - ray spectrum $\implies J_v \propto v^{-\alpha}, \ \alpha_{\pi^0} \approx (q-2)/2, \ \alpha_{\text{shock}} \approx 1 \text{ for } q = 4$ **GeV-TeV**

