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OUTLINE
(1) Background: cooling flow problem, Prandtl number problem...

(2) theoretical considerations:

 Kubo number 

  Magnetic field lines’ relative dispersion in turbulence

  Electrons’ conductivity

Ions’ viscosity 

(3) factors not included in the current model

Dynamics,  percolation... 
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Cooling flow

www.rit.edu/cos/astrophysics/
astro.html
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Theoretical considerations

Z Z

 
χ⊥ 

χSp

(ω ceτ ee )
2 

1
B0
2

δB = 0

B0

Z Z

 δB B0

 
χ⊥ ,eff  (χχ⊥ )

1/2 = ρevthe 
1
B0

Z Z

 δB B0

χ⊥ ,eff = ??

length of “random walk”:

ρe(ω ceτ ee )
−1 ρe(ω ceτ ee )

0 ρe(ω ceτ ee )
1 = lee ??

Friday, September 14, 12



102 G. Zimbardo et al. / Physica A 280 (2000) 99–105

Fig. 1. Poincar!e sections for runs with two values of R=(!B=B0)(l‖=l⊥), but di"erent #uctuation levels and
anisotropy degrees. Adapted from Ref. [21].

Fig. 2. Anomalous di"usion exponents "x and "y versus !B=B0 (panels (a) and (b)). Kurtosis Kx and Ky
versus !B=B0 (panels (c) and (d)). l‖=l⊥ = 100 (squares); l‖=l⊥ = 10 (crosses); l‖=l⊥ = 1 (triangles);
l‖=l⊥ = 0:1 (circles).
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κ = 0.03 κ = 1

Kubo number

conventional definition
 
κ ≡ δB

B0

l
l⊥

In ICM,   δB B0, l  l⊥ , thus   κ 1
magnetic field lines are highly tangled when 

observing from the system scale  
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field line dispersion

L0

rA rA’

field line equation

3 Dispersion of magnetic field lines in MHD turbulence

The purpose of this section is to give a brief discussion on the disperse scaling of two neighboring

magnetic field lines in MHD turbulence. From our experience in fluid turbulence, we know that

the disperse of two neighboring ”test particles” with time obeys a power law named Richardson

law(Richardson1926, Falkovich2001).

Magnetic field equation,
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“

dr

BK
,
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In turbulence,  spectrum of   is power-law form
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Then,  
l(z) = cRlB

−1/2z3/2

4 electrons conductivity and ions viscosity in tangled mag-

netic fields

4.1 E↵ective electron heat conductivity

Typical properties of ICM system: 
L

" 1, L „ hundreds ´ 1000 kpc, l
B

„ a few ´ 100 kpc, l
e´e

„
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B
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, ⇢
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) Next, we make a

discussion on the heat conductivity in these two situations by using the Richardson dispersion

scaling derived in the last section.

Collisional situation. In this situation, the electron excursion length in z is
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Scale of the smallest random structure is   

collisional case,  
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lB (correlation length of magnetic fields) 
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Collisionless case,  

χeff ,cls = cR
2/3vthelB

zcls = vthetcls

In summary

Strongly tangled magnetic field medium(        ) is highly conductive.  κ 1

 lB  lee

The effective heat conductivity depends on the power form of 
tangled fields, BUT is independent of the specific power exponent 
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Ions’ viscosity

In ICM,  the ions are also strongly magnetized

 lB  ion 's gyroradius

Thus, we expect ions’ viscosity behaves similarly with electron 
conductivity under the assumption of static magnetic configuration. 

 
ν i,eff = cR

2/3ν =
1
3
cR
2/3νSpitzerCollisional case:

Collisionless case: ν i,eff ,cls = cR
2/3vthilB
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Influence on Prandtl number Pr ≡
ν i

η

When  κ 1
 
, ν i,eff  (νν⊥ )

1/2  ρivthi 
1
B0

Ion’s viscosity is strongly suppressed by the regular field, 
Pr is constrained to a small value.

 η  de
2νei is not influenced by B.

 κ 1,When  ν i,eff  νSp  liivthi  ρivthi

  Thus,     is increased largely. Pr
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Incompressible MHD turbulence with different magnetic 
Prandtle number

Pmag(k) at saturation

Pvel(k) at saturation

k-5/3

Pm = 1

Pm = 25

k-4

Ryu, ATCTP, Korea, 2011
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Percolation

Okubo-Weiss criterion(2D): 

distinction between regular and irregular

4. The Okubo-Weiss Criterion for Magnetohydrodynamic Flows

Consider a 2D incompressible magnetohydrodynamic (MHD) flow. The equation govern-
ing the transport of the magnetic field B = 〈B1, B2〉 is (Goedbloed and Poedts [13])

DB

Dt
= (B ·∇)v (16a)

which may be rewritten as
DB

Dt
= A ·B. (16b)

If we now assume that the magnetic field evolves quasi-adiabatically with respect to the
straining flow velocity gradient field, equation (16b) may again be locally approximated by
an eigenvalue problem with eigenvalues given by,

λ2 =
1

4

(

uyvx + vy
2
)

≡ Q. (17)

Noting that the MHD Beltrami state2 (Shivamoggi [14]) corresponds to the so-called
Alfvénic state (Hasegawa [15])

v = cB (18)

c being an arbitrary constant, (17) becomes

Q =
c2

4

(

B1yB2x + B2y
2
)

. (19)

In terms of the magnetic vector potential A given by

B ≡ ∇×A, A = Âiz (20)

(19) becomes

Q =
c2

4

[

(

∂2A

∂x∂y

)2

−
∂2A

∂x2

∂2A

∂y2

]

. (21)

(21) implies that the Okubo-Weiss parameter Q for the MHD case characterizes the topo-
logical properties of the magnetic flux surface - it is the negative of the Gaussian curvature
of the magnetic flux surface. As with the case of 2D hydrodynamic flows, (21) can serve as
a useful diagnostic tool to parameterize the magnetic field topology in 2D MHD flows.

5. Discussion

The “slow variation” restriction on the straining flow velocity gradient field used in the
Okubo-Weiss criterion may be quantified via the Beltrami condition with the divorticity

2This has also been done previously (Shivamoggi and van Heijst [16]) in the quantification of the “slow variation” restriction
used in Flierl-Stern-Whitehead [17] zero angular momentum theorem for localized nonlinear structures in 2D quasi-geostrophic
flows on the β-plane.

5

A --- magnetic potential function
Q = -(Gaussian curvature) 

Q>0 Q<0

“X” point “O” point
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Percolation

(1) critical behavior: infinite correlation length

(2) fractal structure

p<p
c p=p

c
p>p c

p---critical exponentc

(Isichenko1992)
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heat !ux j  =b .     
hh

TText~B
coherent

~B
stochastic

~Bcoh〈 ~Bsto〉=0 ~Bcoh〈 ~B sto〉≠0

heat flux 
“trapping”

“caloric” 
particle
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Dynamic effect: turbulent mixing

~ vturblc
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Summery
1, Electron’s heat / ion’s momentum is  enhanced by 
tangled magnetic fields;

2,                  only depends on power law of B spectrum, 
and is insensitive to the specific power exponent.

χe,eff /ν i,eff
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THANK  YOU！
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