Transport in Tangled Magnetic Fields

Zhibin Guo

Peking University

Collaborators: Dongsu Ryu(CNU), P. H. Diamond(NFRI, UCSD)

Ist KNAG meeting, CNU, 13/09/2012

OUTLINE

(I) Background: cooling flow problem, Prandtl number problem...

(2) theoretical considerations:

Kubo number

Magnetic field lines' relative dispersion in turbulence

Electrons' conductivity

lons' viscosity

(3) factors not included in the current model

Dynamics, percolation...

Cooling flow

<u>www.rit.edu/cos/astrophysics/</u> <u>astro.html</u>

Theoretical considerations

$$\rho_e(\omega_{ce}\tau_{ee})^{-1} \longrightarrow \rho_e(\omega_{ce}\tau_{ee})^0 \longrightarrow \rho_e(\omega_{ce}\tau_{ee})^1 = l_{ee}??$$

Kubo number

In ICM, $\delta B \gg B_0$, $l_{\parallel} \simeq l_{\perp}$, thus $\kappa \gg 1$

magnetic field lines are highly tangled when observing from the system scale

Friday, September 14, 12

field line dispersion

field line equation

$$\frac{dz}{B_L + B_{\parallel}} = \frac{dr}{B_{\perp}}$$

$$\frac{d}{dz} |r_A - r_{A'}| = \frac{|B_{\perp}(r_A) - B_{\perp}(r_{A'})|}{B_L + B_{\parallel}} = \frac{\delta B(l)}{B_{l_B}}, \quad l = |r_A - r_{A'}|$$

In turbulence, spectrum of is power-law form

$$\delta B_{\perp}^2 = c_K \epsilon^{2/3} l^{2/3}$$

Then,

$$l(z) = c_R l_B^{-1/2} z^{3/2}$$

Scale of the smallest random structure is l_B (correlation length of magnetic fields)

$$\left<\Delta r^2\right> \simeq \left(\frac{z}{l_B}\right)l_B^2 = zl_B$$

collisional case, $l_B \gg l_{ee}$

$$z = (\chi_{\parallel} t)^{1/2}$$

$$\chi_{eff} \simeq \frac{z_B l_B}{t_B^2} = c_R^{2/3} \chi_{\parallel} = \frac{1}{3} c_R^{2/3} \chi_{Sp}$$

Collisionless case, $l_B \ll l_{ee}$

$$z_{cls} = v_{the} t_{cls}$$

$$\chi_{eff,cls} = c_R^{2/3} v_{the} l_B$$

In summary

Strongly tangled magnetic field medium($\kappa \gg 1$) is highly conductive.

The effective heat conductivity depends on the power form of tangled fields, BUT is independent of the specific power exponent

lons' viscosity

In ICM, the ions are also strongly magnetized

 $l_B \gg ion's$ gyroradius

Thus, we expect ions' viscosity behaves similarly with electron conductivity under the assumption of static magnetic configuration.

Collisional case:
$$V_{i,eff} = c_R^{2/3} V_{\parallel} = \frac{1}{3} c_R^{2/3} V_{Spitzer}$$

Collisionless case: $V_{i,eff,cls} = c_R^{2/3} v_{thi} l_B$

Influence on Prandtl number $P_r \equiv \frac{V_i}{\eta}$

$$\eta \sim d_e^2 V_{ei}$$
 is not influenced by B.

When
$$\mathcal{K} \ll 1$$
, $V_{i,eff} \simeq (V_{\parallel}V_{\perp})^{1/2} \simeq \rho_i v_{thi} \sim \frac{1}{B_0}$

lon's viscosity is strongly suppressed by the regular field, Pr is constrained to a small value.

When
$$\kappa \gg 1$$
, $V_{i,eff} \simeq V_{Sp} \simeq l_{ii} v_{thi} \gg \rho_i v_{thi}$

Thus, P_r is increased largely.

Incompressible MHD turbulence with different magnetic Prandtle number

Percolation

Okubo-Weiss criterion(2D):

distinction between regular and irregular

$$Q = \frac{c^2}{4} \left[\left(\frac{\partial^2 A}{\partial x \partial y} \right)^2 - \frac{\partial^2 A}{\partial x^2} \frac{\partial^2 A}{\partial y^2} \right]$$

A ---- magnetic potential function Q = -(Gaussian curvature)

Percolation

(1) critical behavior: infinite correlation length

(2) fractal structure

(Isichenko I 992)

p<pc

P⁼P_c

P>P c

p---critical exponent

 $\langle \widetilde{B}_{_{coh}}\widetilde{B}_{_{sto}}\rangle \neq 0$

Dynamic effect: turbulent mixing

 $\sim v_{turb}l_c$

Summery

I, Electron's heat / ion's momentum is enhanced by tangled magnetic fields;

2, $\chi_{e,eff} / V_{i,eff}$ only depends on power law of B spectrum, and is insensitive to the specific power exponent.

THANK YOU !