A comparative study of CORSIKA and COSMOS extensive air shower simulations

Soonyoung Roh, Jihee Kim Dongsu Ryu

Chungnam national University

Korean Numerical Astrophysics Group (KNAG) Sep. 23. 2011

Ultra-High Energy Cosmic rays

Cosmic rays (CRs) with energies exceeding 10¹⁸eV , above ankle

Mysteries of the UHECRs

> Where do UHECRs come from, what is the composition of UHECRs, and how are UHECRs accelerated to such extreme energies.

* Candidates of UHECRs?

- <u>Relate to the most varied and powerful energy sources known in the universe.</u>
 - ✓ Active galactic nucleus(**AGNs**), Gamma ray bursts (**GRBs**), and

Cosmological shock waves

Yet, the origin of the highest energy cosmic rays remains UNKNOWN.

Extensive Air Shower (EAS)

- Practically difficult to directly detect cosmic rays particles on earth owing to a rare event
- > On average, 1/1km²/century for particles with energies E₀ > 10²⁰eV

* EAS

- The primary cosmic ray collides with a molecule in the atmosphere transferring much of its energy into a shower of secondary particles.
- billions of sub-particles at the ground
 → Extensive Air Shower(EAS)
- Properties of primary particles such as their chemical components, energies, and arrival directions and so on.

Need a huge observation detector to increase detection opportunity due to low flux of UHECRs.

Air shower simulations : COSMOS & CORSIKA

*****Air shower M.C simulation

- Detailed simulations of extensive air showers(EAS) initiated by high energy cosmic ray particles.
- Evolutions and properties of EAS in the atmosphere.
- Comparison between CORSIKA and COSMOS under the same conditions
- Iongitudinal distribution of particle, Xmax, kinetic energy distribution at the ground, and calorimetric energy in EAS.

Air shower simulations : COSMOS & CORSIKA

- Atmospheric environment
- Observation level (1430m above sea level)
- Threshold energy of each particles
- (photons and electron = 500KeV, muon and hadron = 50MeV)
- Hadronic interaction model at the highest energy (E > 80GeV, QGSJET2-03)
- Algorithm to reduce CPU time and disk space (Thinning and weight)
- Hadronic interaction model at the low energy (E < 80GeV) phits and jam for COSMOS, Fluka for CORSIKA

Propagation of air shower : Longitudinal distribution

Proton primary

Primary energy : 10^{19.5} eV Zenith angle : 0° (vertical shower)

Photons, electrons, muons, hadrons as a function of Atmospheric depth (g/cm²)

⁶ Hadron(=pion + kaon + nucleon)

X_{max} : shower maximum depth

* X_{max} : Correlated with the mass composition of cosmic ray.

& Equation 1

The EAS has a longitudinal distribution usually represented by the Gaisser-Hillas function giving the approximate number of electrons as a function of atmospheric depth X :

$$N_{e,\max}(t) = N_{\max}\left(\frac{X - X_0}{X_{\max} - X_0}\right)^{\frac{X_{\max} - X_0}{\lambda}} \exp\left(\frac{X_{\max} - X}{\lambda}\right)$$

where λ is the interaction mean free path, normally it is fixed to a value of 70g/cm² of protons for both proton and iron.

 $N_{e,max}$: maximum number of electrons.

 x_0 : depth at which the first interaction occurs.

X_{max} : Shower maximum point

& Equation 2

$$N_{e,\max}(t) = a\left(\frac{X}{b}\right)^{c} \exp\left[-d\left(\frac{X}{b}\right)^{e}\right]$$

• where, a, b, c, d, and e are free parameters to evaluate X_{max}

$$X_{\max} = b(c / d / e)^{\frac{1}{e}}$$

This equation seems to work better for estimation of X_{max} .

X_{max} : Shower maximum point

X_{max} : Shower maximum point

X _{max}								
particle	$\log_{10} E (\mathrm{eV})$	18.5	18.75	19	19.25	19.5	19.75	20
	CORSIKA	748.22	760.99	773.84	782.41	796.35	804.71	817.31
proton	$\sigma_{X_{\max}}$	55.91	61.69	60.61	53.74	60.30	56.80	57.32
	COSMOS	745.96	764.73	774.91	781.3	781.27	814.48	837.23
	$\sigma_{X_{\max}}$	47.24	45.11	54.49	52.92	48.99	44.86	42.67
	CORSIKA	665.19	674.87	691.83	705.30	715.86	729.21	741.94
iron	$\sigma_{X_{\max}}$	27.82	25.83	27.26	29.23	34.08	34.08	38.10
	COSMOS	671.41	698.13	704.42	702.29	712.57	742.30	754.17
	$\sigma_{X_{\max}}$	19.57	24.64	20.62	23.24	19.01	18.77	21.98

- Up to $20g/cm^2$ at $10^{20}eV$
- Difference is small! corresponds with < 10g/cm²
- $\sigma_{X_{\text{max}}}$ for proton : ~50g/cm²
- $\sigma_{X_{\text{max}}}$ for iron : ~20g/cm²

- EX) iron showers :
 fluctuations are
 small
- -> superposition of 56 nucleoninduced showers.

Kinetic energy distribution at the observation level

Photons, electrons, muons, hadrons as a function of log (E0).

Shower core region is included.

The difference in the hadron number is much larger,
 although the number itself is much smaller than those of other particles.

Calorimetric energy

- **Calorimetric energy (E**_{cal}) : deposited energy into air
- Missing energy : hitting on the ground owing to secondary particles such as neutrinos, hadrons, and high-energy muons.
 Missing energy must be properly considered with the E_{cal}.
- Suggested by Barbosa et al. (2004)

$$E_{cal}(t) = f_{em}F_{em}(E > E_{threshold}, t) + f_{em}F_{em}^{*}(E \le E_{threshold}, t) + f'_{hadron}F_{hadron}(E > E_{threshold}^{hadron}, t) + f_{hadron}F_{hadron}^{*}(E \le E_{threshold}^{hadron}, t) + f_{muon}F_{muon}^{*}(E \le E_{threshold}^{muon}, t) + \sum_{i}D_{i}^{*}(t)$$

• $f_h' = 0.61, f_h = 0.739 f_{\mu} = 0.425$

- the fraction of energy F(E>E_{theshold},t) or F(E<E_{theshold},t), which will eventually used to ionize the air, were obtained from geant4 simulation.
- Neutrino is not included in $\sum_{i} D_i^*(t)$.

Summary and Conclusion

Propagation of air shower : Longitudinal distribution

- Overall, the mean numbers are predicted to be larger with CORSIKA than with **COSMOS** with secondary particle.
- The number of particles : difference of photons and electrons is \sim 5% or less at
- On the other, the difference of hadron and muon is larger with CORSIKA.
- The number of muon is ok (within σ).

 X_{max} : Shower maximum point

-Correlated with the mass composition of cosmic ray.

- Up to 20g/cm² at 10²⁰eV
- A few % on the average and corresponds with < 10g/cm²
- $\sigma_{X_{\text{max}}}$ for proton : ~50g/c

•
$$\mathcal{O}_{X_{\text{max}}}$$
 for proton : ~50g/cm²
• $\mathcal{O}_{X_{\text{max}}}$ for iron : ~20g/cm² $\mathcal{N}_{e}(t) = a \left(\frac{\chi}{b}\right)^{c} \exp\left[-d\left(\frac{\chi}{b}\right)^{e}\right]$

Summary and Conclusion

Kinetic energy distribution at the observation level

- Energy :
 Photon and electron : 8%, (CORSIKA > COSMOS)
 Muon : COSMOS > CORSIKA ~5.6%
 Hadron : CORSIKA > COSMOS very large
- Number:

Photon, electron, and muon ~ 4%, 1%, and 7%.

However, CORSIKA is very larger than COSMOS at low kinetic energy part (<1GeV) for hadron.

- Nucleon : 21% (number) and 12% (energy)
- > Lead to large difference in hadron.
- > Caused by hadronic interaction model at low energy....
- | |6

Summary and Conclusion

Calorimetric energy

deposited energy into air

$$E_{cal}(t) = f_{em}F_{em}(E > E_{threshold}, t) + f_{em}F_{em}^{*}(E \le E_{threshold}, t) + f'_{hadron}F_{hadron}(E > E_{threshold}^{hadron}, t) + f_{hadron}F_{hadron}^{*}(E \le E_{threshold}^{hadron}, t) + f_{muon}F_{muon}^{*}(E \le E_{threshold}^{muon}, t) + \sum_{i}D_{i}^{*}(t)$$

• E_{cal}/E_0 of COSMOS is larger than CORSIKA. ~2%

$$\sum_{i} D_{i}^{*}(t) : \text{COSMOS} > \text{CORSIKA} (2 \sim 3\%)$$

$$f_{\text{em}}F_{\text{em}}(E > E_{\text{threshold}}, t) + f_{\text{em}}F_{\text{em}}^{*}(E \leq E_{\text{threshold}}, t) : \text{CORSIKA} > \text{COSMOS}$$

$$\sum_{i} D_{i}^{*}(t) > 10^{*} f_{\text{em}}F_{\text{em}}(E > E_{\text{threshold}}, t) + f_{\text{em}}F_{\text{em}}^{*}(E \leq E_{\text{threshold}}, t)$$

$$\sum_{i} D_{i}^{*}(t) > 1000^{*} f_{\text{hadron}}^{\prime}F_{\text{hadron}}(E > E_{\text{threshold}}, t) + f_{\text{hadron}}F_{\text{hadron}}^{*}(E \leq E_{\text{threshold}}, t) + f_{\text{muon}}F_{\text{muon}}^{*}(E \leq E_{\text{threshold}}, t)$$

- ✤ Fluorescence telescope experiment : primary energy estimated using the COSMOS would be ~ 2 % smaller when CORSIKA simulation is used.
- **Surface detector experiment** : primary energy estimated using the
- ▶ ^{|7}CORSIKA would be smaller when COSMOS simulation is used.