

2D genus topology of 21cm differential brightness temperature during cosmic reionization

Kyungjin Ahn (Chosun), **SEH** (CNU/KAIST), Changbom Park, Juhan Kim (KIAS), Ilian T. Iliev (Sussex) and Garrelt Mellema (Stockholm) arXiv:1008.3914

> Sungwook E. Hong KNAG meeting, 2011/09/23

Redshifted 21cm signal

• $g_{2D}(T_{th}) = (\# \text{ of hot spots}) - (\# \text{ of cold spots})$ Melott et al. 1989; Gott et al. 1990; Colley & Gott 2003; Gott et al. 2007

Simulations

N-body: GOTPM Dubinski et al. 2004; Kim et al. 2009

matter density

halo profile

matter density

halo profile

matter density

halo profile

Reionization: C²Ray Mellema et al. 2005 Mellema tal. 2005 differential brightness temperature

ionization fraction

ionization fraction

 $\delta T_b =$

differential brightness temperature

differential brightness temperature

$$\frac{(28 mK)\left(\frac{1+z}{10}\right)^{\frac{1}{2}}}{10}(1+\delta)(1-x)$$

time

Simulations

- N-body simulation
 - ACDM model with WMAP 5yr parameters
 - 2048³ particles
 - $66 \text{ Mpc/h box} (\sim 30' \text{ at } z = 14)$
- Reionization simulation
 - 256³ mesh
 - 4 source property models
 - 2 for high-mass halos only (M > $10^9 M_{sun}$)
 - 2 for high-mass and low-mass halos $(10^8 < M/M_{sun} < 10^9)$

Mock 21-cm sky map

Mock 21-cm sky map

Mock 21-cm sky map

2D genus: evolution process

2D genus: evolution process

2D genus: evolution process

2D genus: evolution process

Low-mass source

- High-mass ($M \ge 10^9 M_{\odot}$) source emissivity: same
- Low-mass $(10^8 \le \frac{M}{M_{\odot}} \le 10^9)$ source emissivity:
 - f125_125S: low
 - f125_1000S: high

(a)

f125_125S

f125_1000S

high low-mass efficiency

more detailed bubbles

amplitude increases

f125_1000S

high low-mass efficiency all overdense region ionized

genus = 0

Beam shape dependency

Gaussian

Compensated Gaussian

Crude approximation of actual beam with lack of large scale signal

Beam shape dependency

Beam shape dependency

Sensitivities in SKA

- 2D genus curve clearly shows the evolution of the reionization process.
- 2D genus method can be used to discriminate between various scenarios.
- SKA will be able to produce data suitable for the 2D genus analysis, with
 - Integration: 100 ~ 1000 hours
 - Beam size: 2 ~ 3 arcminutes
 - Bandwidth: 1 ~ 2 MHz

Thank you!

