Statistics of isothermal compressible turbulence

: Single forcing versus Double forcing

Korean Numerical Astrophysics Group 2010.12.17

> Chungnam National University Hyunju, Yoo

Outline

- Interstellar Medium & Turbulence
- Driving mechanism
- Purpose of this study
- Time evolution of energy density
- Energy spectrum
- Probability distribution function
- Summary
- Future work

Interstellar Medium and Turbulence

- * Stars form in Cool / dense molecular clouds in ISM
- * Turbulence, Gravity, Thermal process, Magnetic field
 - \Rightarrow Influence on structure / dynamics of ISM
 - \Rightarrow determine the modes of driving scale
- * Turbulent magnetized ISM plays an important role in star formation and galaxy formation.

The Large Magellanic cloud © E. Slawik

M83 ©NASA

Driving mechanisms

- * Lack of energy injection (insufficient driving of flow) ⇒ turbulence will quickly dissipate
 - \Rightarrow becomes laminar
- ★ Driving mechanism can support turbulent motion
 ⇒ balance between turbulence and local density
 ⇒ determine star formation rate

Driving mechanisms

- * Magnetorotational Instabilities
- * Gravitational Instabilities
- * Protostellar outflows
- * Massive star
 - stellar wind
 - ionizing radiation
 - supernova explosion

Observed results

- * Observed results about driving scale in the ISM
- Han et al.(2004)
 - : supernova explosion ~ 100 pc
- Haverkorn et al.(2008)
 - : protostellar outflow ~ few pc

* No settled-down issue about driving scale of ISM in our galaxy

Other Simulations

* Many other turbulence simulations
: energy injected at single k-number range (especially in large scale)
(M.M.Mac Low et al.(1999), (2002)..)

* Some simulations

: comparing between incompressible(solenoidal) forcing and compressible(dilatational) forcing (A.G.Kritsuk et al.(2009), Federrath et al.(2008), M.Petersen et al.(2009)..)

<u>Informations</u>

C.Federrath et al.(2008)

Velocity power spectrum is dominated by the solenoidal component

The standard deviation of the density PDF -> compressive forcing is nearly 3 times larger than solenoidal forcing

<u>Informations</u>

M.Petersen et al. (2009)

The χ parameter shows the ratio of dilatational to solenoidal kinetic energy and it exhibit the effects of compressibility.

(e.g. Low χ / low Mach no. \Rightarrow incompressible

Purpose of this study

- * ISM ⇐ energy input in several driving scales (no single)
- * The characteristic of turbulence is depends on the driving scale which induced by different energy injection mechanism
- * Making models with double forcing modes
 - \Rightarrow Comparing with single forcing modes
 - \Rightarrow Statistics
 - \Rightarrow Suggest the driving scale in our galaxy

Initial conditions in simulation

- * MagnetoHydroDynamic/HydroDynamic compressible turbulence
- * 3-dimension (128x128x128)
- * Periodic box size : 2π
- * Isothermal (T is invariant)
- * Ideal gas (γ=1 in EOS)
- * Ignore self-gravitation / cooling effect
- * Solenoidal forcing(∇·v=o; divergence-free)

* Numerical turbulence - driven in Fourier space * Number of small scale forcing modes

 controls the amount of energy injected into turbulence at small scale in double forcing simulation

*Single forcing : 22 forcing only in large scale (k~2) *Double forcing : 22 forcing in large scale (k~2) + additional forcing in small scale (k~11)

Mach number

 $C_s \propto \sqrt{p}$

* Sound speed $C_s = \sqrt{\gamma \frac{P}{\rho}}$

Isothermal $\Rightarrow \gamma = 1$ assume $\rho = 1$ (at t=0)

* Mach number $M = \frac{\langle v \rangle}{C_c}$

assume $< v > \sim 1$

 $\therefore M \propto \frac{1}{\sqrt{P}}$ \Rightarrow In this simulation,

Simulation conditions

- * Models with different pressure (i.e. Mach number)
 - P=0.1 \Rightarrow M~3.16227766 (supersonic)
 - P=1.0 \Rightarrow M~1 (sonic)
 - P=10.0 \Rightarrow M~0.316227766 (subsonic)
- * External mean magnetic field (when t=o) : B_{ext}=o(HD), 0.01, 0.1(MHD)

Time evolution of energy density

* Time evolution of kinetic / magnetic energy density - MHD (B_{ext}=0.01)

Sonic turbulence (M~0.316)

Time evolution of energy density

* Time evolution of kinetic energy density - HD (B_{ext}=0)

M~3.16

Subsonic turbulence M~0.316

Turbulent energy cascade

* Turbulent energy cascade : Energy is transferred along the power spectrum from largest scale to the dissipation scale

* Dissipation rate $\frac{v}{L^2}$ = Energy injection rate $\frac{V_L}{L}$

* Kinetic specrum - MHD (B_{ext}=0.01)

Sonic turbulence (M~1)

* Kinetic energy specrum
 - HD (B_{ext}=0)

Supersonic turbulence M~3.16 Subsonic turbulence M~0.316

Density spectrum

- * Kim & Ryu (2005)
- * Mach number
 - : important parameter that characterizes the density power spectrum
- * higher Mach number

-> slope of density spectrum flattens

* Density specrum - MHD (B_{ext}=0.01)

Sonic turbulence (M~1)

Density spectrum

* Density specrum - HD (B_{ext}=0)

Supersonic turbulence M~3.16 Subsonic turbulence M~0.316

Magnetic spectrum

* Magnetic energy specrum - MHD

Sonic turbulence M~1 (B_{ext}=0.01)

Sonic turbulence M~1 (B_{ext}=0.1) PDF

2010년 12월 17일 금요일

<u>σ-energy input rate relation</u>

* The relation between average standard deviation of density and average energy input rate (total scale)

<u>σ-energy input rate relation</u>

* The relation between average standard deviation of density and average energy input rate (small scale)

Summary

- * Numerical simulations of driven MHD/HD turbulence with different forcing modes.
- * The rate of kinetic energy density and magnetic energy density growth is decrease as energy input rate increase.
- * In kinetic energy spectrum, the peak at small scale increase with more energy injection in small scale.
- * Density spectrum is flatten as energy input in small scale increase.
- * Magnetic energy spectrum is much flatter than the Kolmogorov spectrum.
- * The standard deviation of density in higher mach number is larger than smaller one.

- * Higher resolution simulation
- * PDF comparison
- * Visualization
- * Clump-finding

Thank you :)